4 research outputs found

    Attention-controlled acquisition of a qualitative scene model for mobile robots

    Get PDF
    Haasch A. Attention-controlled acquisition of a qualitative scene model for mobile robots. Bielefeld (Germany): Bielefeld University; 2007.Robots that are used to support humans in dangerous environments, e.g., in manufacture facilities, are established for decades. Now, a new generation of service robots is focus of current research and about to be introduced. These intelligent service robots are intended to support humans in everyday life. To achieve a most comfortable human-robot interaction with non-expert users it is, thus, imperative for the acceptance of such robots to provide interaction interfaces that we humans are accustomed to in comparison to human-human communication. Consequently, intuitive modalities like gestures or spontaneous speech are needed to teach the robot previously unknown objects and locations. Then, the robot can be entrusted with tasks like fetch-and-carry orders even without an extensive training of the user. In this context, this dissertation introduces the multimodal Object Attention System which offers a flexible integration of common interaction modalities in combination with state-of-the-art image and speech processing techniques from other research projects. To prove the feasibility of the approach the presented Object Attention System has successfully been integrated in different robotic hardware. In particular, the mobile robot BIRON and the anthropomorphic robot BARTHOC of the Applied Computer Science Group at Bielefeld University. Concluding, the aim of this work, to acquire a qualitative Scene Model by a modular component offering object attention mechanisms, has been successfully achieved as demonstrated on numerous occasions like reviews for the EU-integrated Project COGNIRON or demos

    Visual Analysis in Traffic & Re-identification

    Get PDF

    Design and optimization of approximate multipliers and dividers for integer and floating-point arithmetic

    Full text link
    The dawn of the twenty-first century has witnessed an explosion in the number of digital devices and data. While the emerging deep learning algorithms to extract information from this vast sea of data are becoming increasingly compute-intensive, traditional means of improving computing power are no longer yielding gains at the same rate due to the diminishing returns from traditional technology scaling. To minimize the increasing gap between computational demands and the available resources, the paradigm of approximate computing is emerging as one of the potential solutions. Specifically, the resource-efficient approximate arithmetic units promise overall system efficiency, since most of the compute-intensive applications are dominated by arithmetic operations. This thesis primarily presents design techniques for approximate hardware multipliers and dividers. The thesis presents the design of two approximate integer multipliers and an approximate integer divider. These are: an error-configurable minimally-biased approximate integer multiplier (MBM), an error-configurable reduced-error approximate log based multiplier (REALM), and error-configurable integer divider INZeD. The two multiplier designs and the divider designs are based on the coupling of novel mathematically formulated error-reduction mechanisms in the classical approximate log based multiplier and dividers, respectively. They exhibit very low error bias and offer Pareto-optimal error vs. resource-efficiency trade-offs when compared with the state-of-the-art approximate integer multipliers/dividers. Further, the thesis also presents design of approximate floating-point multipliers and dividers. These designs utilize the optimized versions of the proposed MBM and REALM multipliers for mantissa multiplications and the proposed INZeD divider for mantissa division, and offer better design trade-offs than traditional precision scaling. The existing approximate integer dividers as well as the proposed INZeD suffer from unreasonably high worst-case error. This thesis presents WEID, which is a novel light-weight method for reducing worst-case error in approximate dividers. Finally, the thesis presents a methodology for selection of approximate arithmetic units for a given application. The methodology is based on a novel selection algorithm and utilizes the subrange error characterization of approximate arithmetic units, which performs error characterization independently in different segments of the input range

    Forum Bildverarbeitung 2020

    Get PDF
    Image processing plays a key role for fast and contact-free data acquisition in many technical areas, e.g., in quality control or robotics. These conference proceedings of the “Forum Bildverarbeitung”, which took place on 26.-27.11.202 in Karlsruhe as a common event of the Karlsruhe Institute of Technology and the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, contain the articles of the contributions
    corecore