33,379 research outputs found

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Some Efficient Solutions to Yao's Millionaire Problem

    Full text link
    We present three simple and efficient protocol constructions to solve Yao's Millionaire Problem when the parties involved are non-colluding and semi-honest. The first construction uses a partially homomorphic Encryption Scheme and is a 4-round scheme using 2 encryptions, 2 homomorphic circuit evaluations (subtraction and XOR) and a single decryption. The second construction uses an untrusted third party and achieves a communication overhead linear in input bit-size with the help of an order preserving function.Moreover, the second construction does not require an apriori input bound and can work on inputs of different bit-sizes. The third construction does not use a third party and, even though, it has a quadratic communication overhead, it is a fairly simple construction.Comment: 17 page

    Bit-Vector Model Counting using Statistical Estimation

    Full text link
    Approximate model counting for bit-vector SMT formulas (generalizing \#SAT) has many applications such as probabilistic inference and quantitative information-flow security, but it is computationally difficult. Adding random parity constraints (XOR streamlining) and then checking satisfiability is an effective approximation technique, but it requires a prior hypothesis about the model count to produce useful results. We propose an approach inspired by statistical estimation to continually refine a probabilistic estimate of the model count for a formula, so that each XOR-streamlined query yields as much information as possible. We implement this approach, with an approximate probability model, as a wrapper around an off-the-shelf SMT solver or SAT solver. Experimental results show that the implementation is faster than the most similar previous approaches which used simpler refinement strategies. The technique also lets us model count formulas over floating-point constraints, which we demonstrate with an application to a vulnerability in differential privacy mechanisms

    Combining Static and Dynamic Analysis for Vulnerability Detection

    Full text link
    In this paper, we present a hybrid approach for buffer overflow detection in C code. The approach makes use of static and dynamic analysis of the application under investigation. The static part consists in calculating taint dependency sequences (TDS) between user controlled inputs and vulnerable statements. This process is akin to program slice of interest to calculate tainted data- and control-flow path which exhibits the dependence between tainted program inputs and vulnerable statements in the code. The dynamic part consists of executing the program along TDSs to trigger the vulnerability by generating suitable inputs. We use genetic algorithm to generate inputs. We propose a fitness function that approximates the program behavior (control flow) based on the frequencies of the statements along TDSs. This runtime aspect makes the approach faster and accurate. We provide experimental results on the Verisec benchmark to validate our approach.Comment: There are 15 pages with 1 figur
    • …
    corecore