6 research outputs found

    Review on Additive Manufacturing of Multi-Material Parts:Progress and Challenges

    Get PDF
    Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in the automotive, aerospace, biomedical and dentistry fields were demonstrated. An investigation on the current challenges was also carried out to predict the future direction of MMAM processes. It was concluded that further research and development is needed in the design of multi-material interfaces, manufacturing processes and the material compatibility of MMAM parts

    Studio di tecniche di modellazione volumetrica per la realizzazione di componenti a variazione graduale di composizione mediante tecnologie additive

    Get PDF
    Analisi delle principali tecnologie di stampa 3D, studio di tecniche di modellazione volumetrica tramite metodi "function-based" e discreti, processo di realizzazione di oggetti a variazione graduale di composizione, assemblaggio di una stampante 3D con tecnologia FDM

    Efficient slicing of Catmull–Clark solids for 3D printed objects with functionally graded material

    No full text
    In the competition for the volumetric representation most suitable for functionally graded materials in additively manufactured (AM) objects, volumetric subdivision schemes, such as Catmull-Clark (CC) solids, are widely neglected. Although they show appealing properties, e_cient implementations of some fundamental algorithms are still missing. In this paper, we present a fast algorithm for direct slicing of CC-solids generating bitmaps printable by multi-material AMmachines. Our method optimizes runtime by exploiting constant time limit evaluation and other structural characteristics of CCsolids. We compare our algorithm with the state of the art in trivariate trimmed spline representations and show that our algorithm has similar runtime behavior as slicing trivariate splines, fully supporting the benefits of CC-solids

    Bending-active plates : strategies for the induction of curvature through the means of elastic bending of plate-based structures

    Get PDF
    Commonly referred to as bending-active, the term has come to describe a wide variety of systems that employ the large defor-mation of their constituent components as a primary shape-forming strategy. It is generally impossible to separate the struc-ture from its geometry, and this is even more true for bending-active systems. Placed at the intersection between geometry, de-sign and engineering, the principle objective of this thesis is to develop an understanding of the structural and architectural po-tential of bending-active systems beyond the established typolo-gies which have been investigated so far. The main focus is set on systems that make use of surface-like elements as principle build-ing blocks, as opposed to previous and existing projects that pre-dominantly employed linear components such as rods and laths. This property places the analysed test cases and developed proto-types within a specific category of bending-active systems known as bending-active plate structures. The first chapters serve as a general introduction to the topic. An overview of relevant recent projects is presented in the introduction, followed by a discussion on the scope of research on bending-active structures. The following chapters lay the theoretical basis in terms of geometry of surfaces and mechanical behaviour of plates. This dual and complementary description serves as the necessary background to understand the limits and potential associated to the deformability of plate elements. The following chapter delves into the first of the two strategies developed as part of this research. Termed form conversion, this approach establishes a one-to-one relationship between the initial base surface and its bending-active discrete counterpart. The chapter proceeds with the presentation of a series of full-scale prototypes that were realised to test the validity of the form con-version approach. Geometrical and mechanical features are dis-cussed in the conclusion of the chapter. The second developed method, named integral approach, is pre-sented in the next section. This approach takes advantage of the inherent deformation properties of explicitly designed material patterns. The description of the method is followed by the presen-tation and discussion of the prototypes chosen to test the integral approach. Finally, the thesis concludes with a critical discussion of the presented approaches and a discussion on potential developments for future research

    Fabricate

    Get PDF
    Bringing together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation, Fabricate is a triennial international conference, now in its third year (ICD, University of Stuttgart, April 2017). Each year it produces a supporting publication, to date the only one of its kind specialising in Digital Fabrication. The 2017 edition features 32 illustrated articles on built projects and works in progress from academia and practice, including contributions from leading practices such as Foster + Partners, Zaha Hadid Architects, Arup, and Ron Arad, and from world-renowned institutions including ICD Stuttgart, Harvard, Yale, MIT, Princeton University, The Bartlett School of Architecture (UCL) and the Architectural Association

    Fabricate 2017

    Get PDF
    Bringing together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation, Fabricate is a triennial international conference, now in its third year (ICD, University of Stuttgart, April 2017). Each year it produces a supporting publication, to date the only one of its kind specialising in Digital Fabrication. The 2017 edition features 32 illustrated articles on built projects and works in progress from academia and practice, including contributions from leading practices such as Foster + Partners, Zaha Hadid Architects, Arup, and Ron Arad, and from world-renowned institutions including ICD Stuttgart, Harvard, Yale, MIT, Princeton University, The Bartlett School of Architecture (UCL) and the Architectural Association
    corecore