163 research outputs found

    A General Model for the Design of Efficient Sign-Coding Tools for Wavelet-Based Encoders

    Full text link
    [EN] Traditionally, it has been assumed that the compression of the sign of wavelet coefficients is not worth the effort because they form a zero-mean process. However, several image encoders such as JPEG 2000 include sign-coding capabilities. In this paper, we analyze the convenience of including sign-coding techniques into wavelet-based image encoders and propose a methodology that allows the design of sign-prediction tools for whatever kind of wavelet-based encoder. The proposed methodology is based on the use of metaheuristic algorithms to find the best sign prediction with the most appropriate context distribution that maximizes the resulting sign-compression rate of a particular wavelet encoder. Following our proposal, we have designed and implemented a sign-coding module for the LTW wavelet encoder, to evaluate the benefits of the sign-coding tool provided by our proposed methodology. The experimental results show that sign compression can save up to 18.91% of bit-rate when enabling sign-coding capabilities. Also, we have observed two general behaviors when coding the sign of wavelet coefficients: (a) the best results are provided from moderate to high compression rates; and (b) the sign redundancy may be better exploited when working with high-textured images.This research was supported by the Spanish Ministry of Economy and Competitiveness under Grant RTI2018-098156-B-C54, co-financed by FEDER funds (MINECO/FEDER/UE).López-Granado, OM.; Martínez-Rach, MO.; Martí-Campoy, A.; Cruz-Chávez, MA.; Pérez Malumbres, M. (2020). A General Model for the Design of Efficient Sign-Coding Tools for Wavelet-Based Encoders. Electronics. 9(11):1-17. https://doi.org/10.3390/electronics9111899S117911Said, A., & Pearlman, W. A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243-250. doi:10.1109/76.499834ISO/IEC 15444-1:2019. Information technology—JPEG 2000 Image Coding System—Part 1: Core Coding Systemhttps://www.iso.org/standard/78321.htmlTaubman, D. (2000). High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, 9(7), 1158-1170. doi:10.1109/83.847830Bilgin, A., Sementilli, P. J., & Marcellin, M. W. (1999). Progressive image coding using trellis coded quantization. IEEE Transactions on Image Processing, 8(11), 1638-1643. doi:10.1109/83.799891Oliver, J., & Malumbres, M. P. (2006). Low-Complexity Multiresolution Image Compression Using Wavelet Lower Trees. IEEE Transactions on Circuits and Systems for Video Technology, 16(11), 1437-1444. doi:10.1109/tcsvt.2006.883505Cho, Y., & Pearlman, W. A. (2007). Hierarchical Dynamic Range Coding of Wavelet Subbands for Fast and Efficient Image Decompression. IEEE Transactions on Image Processing, 16(8), 2005-2015. doi:10.1109/tip.2007.901247Deever, A. T., & Hemami, S. S. (2003). Efficient sign coding and estimation of zero-quantized coefficients in embedded wavelet image codecs. IEEE Transactions on Image Processing, 12(4), 420-430. doi:10.1109/tip.2003.811499Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7), 710-732. doi:10.1109/34.142909López-Granado, O., Galiano, V., Martí, A., Migallón, H., Martínez-Rach, M., Piñol, P., & Malumbres, M. P. (2013). Improving image compression through the use of evolutionary computing algorithms. Data Management and Security. doi:10.2495/data130041Kodak Lossless True Color Image Suitehttp://r0k.us/graphics/kodak/Rawzor—Lossless Compression Software for Camera Raw Imageshttp://imagecompression.info/test_images

    Wavelet-Based Embedded Rate Scalable Still Image Coders: A review

    Get PDF
    Embedded scalable image coding algorithms based on the wavelet transform have received considerable attention lately in academia and in industry in terms of both coding algorithms and standards activity. In addition to providing a very good coding performance, the embedded coder has the property that the bit stream can be truncated at any point and still decodes a reasonably good image. In this paper we present some state-of-the-art wavelet-based embedded rate scalable still image coders. In addition, the JPEG2000 still image compression standard is presented.

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2-D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. [Continues.

    Motion estimation and signaling techniques for 2D+t scalable video coding

    Get PDF
    We describe a fully scalable wavelet-based 2D+t (in-band) video coding architecture. We propose new coding tools specifically designed for this framework aimed at two goals: reduce the computational complexity at the encoder without sacrificing compression; improve the coding efficiency, especially at low bitrates. To this end, we focus our attention on motion estimation and motion vector encoding. We propose a fast motion estimation algorithm that works in the wavelet domain and exploits the geometrical properties of the wavelet subbands. We show that the computational complexity grows linearly with the size of the search window, yet approaching the performance of a full search strategy. We extend the proposed motion estimation algorithm to work with blocks of variable sizes, in order to better capture local motion characteristics, thus improving in terms of rate-distortion behavior. Given this motion field representation, we propose a motion vector coding algorithm that allows to adaptively scale the motion bit budget according to the target bitrate, improving the coding efficiency at low bitrates. Finally, we show how to optimally scale the motion field when the sequence is decoded at reduced spatial resolution. Experimental results illustrate the advantages of each individual coding tool presented in this paper. Based on these simulations, we define the best configuration of coding parameters and we compare the proposed codec with MC-EZBC, a widely used reference codec implementing the t+2D framework

    Entropy-based evaluation of context models for wavelet-transformed images

    Get PDF
    Entropy is a measure of a message uncertainty. Among others aspects, it serves to determine the minimum coding rate that practical systems may attain. This paper defines an entropy-based measure to evaluate context models employed in wavelet-based image coding. The proposed measure is defined considering the mechanisms utilized by modern coding systems. It establishes the maximum performance achievable with each context model. This helps to determine the adequateness of the model under different coding conditions and serves to predict with high precision the coding rate achieved by practical systems. Experimental results evaluate four well-known context models using different types of images, coding rates, and transform strategies. They reveal that, under specific coding conditions, some widely-spread context models may not be as adequate as it is generally thought. The hints provided by this analysis may help to design simpler and more efficient wavelet-based image codecs

    2-step scalar deadzone quantization for bitplane image coding

    Get PDF
    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000
    • …
    corecore