1,751 research outputs found

    Distributed Computation of Connected Dominating Set for Multi-Hop Wireless Networks

    Get PDF
    AbstractIn large wireless multi-hop networks, routing is a main issue as they include many nodes that span over relatively a large area. In such a scenario, finding smallest set of dominant nodes for forwarding packets would be a good approach for better communication. Connected dominating set (CDS) computation is one of the method to find important nodes in the network. As CDS computation is an NP problem, several approximation algorithms are available but these algorithms have high message complexity. This paper discusses the design and implementation of a distributed algorithm to compute connected dominating sets in a wireless network with the help of network spectral properties. Based on local neighborhood, each node in the network finds its ego centric network. To identify dominant nodes, it uses bridge centrality value of ego centric network. A distributed algorithm is proposed to find nodes to connect dominant nodes which approximates CDS. The algorithm has been applied on networks with different network sizes and varying edge probability distributions. The algorithm outputs 40% important nodes in the network to form back haul communication links with an approximation ratio ≤ 0.04 * ∂ + 1, where ∂ is the maximum node degree. The results confirm that the algorithm contributes to a better performance with reduced message complexity

    Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems

    Full text link
    In many wireless networks, there is no fixed physical backbone nor centralized network management. The nodes of such a network have to self-organize in order to maintain a virtual backbone used to route messages. Moreover, any node of the network can be a priori at the origin of a malicious attack. Thus, in one hand the backbone must be fault-tolerant and in other hand it can be useful to monitor all network communications to identify an attack as soon as possible. We are interested in the minimum \emph{Connected Vertex Cover} problem, a generalization of the classical minimum Vertex Cover problem, which allows to obtain a connected backbone. Recently, Delbot et al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant approximation ratio of 22 for this problem. In this paper, we propose a distributed and self-stabilizing version of their algorithm with the same approximation guarantee. To the best knowledge of the authors, it is the first distributed and fault-tolerant algorithm for this problem. The approach followed to solve the considered problem is based on the construction of a connected minimal clique partition. Therefore, we also design the first distributed self-stabilizing algorithm for this problem, which is of independent interest

    Linear-Time Algorithms for Edge-Based Problems

    Get PDF
    There is a dearth of algorithms that deal with edge-based problems in trees, specifically algorithms for edge sets that satisfy a particular parameter. The goal of this thesis is to create a methodology for designing algorithms for these edge-based problems. We will present a variant of the Wimer method [Wimer et al. 1985] [Wimer 1987] that can handle edge properties. We call this variant the Wimer edge variant. The thesis is divided into three sections, the first being a chapter devoted to defining and discussing the Wimer edge variant in depth, showing how to develop an algorithm using this variant, and an example of this process, including a run of an algorithm developed using this method. The second section involves algorithms developed using the Wimer edge variant. We will provide algorithms for a variety of edge parameters, including four different matching parameters (connected, disconnected, induced and 2-matching), three different domination parameters (edge, total edge and edge-vertex) and two covering parameters (edge cover and edge cover irredundance). Each of these algorithms are discussed in detail and run in linear time. The third section involves an attempt to characterize the Wimer edge variant. We show how the variant can be applied to three classes of graphs: weighted trees, unicyclic graphs and generalized series-parallel graphs. For each of these classes, we detail what adaptations are required (if any) and design an algorithm, including showing a run on an example graph. The fourth chapter is devoted to a discussion of what qualities a parameter has to have in order to be likely to have a solution using the Wimer edge variant. Also in this chapter we discuss classes of graphs that can utilize the Wimer edge variant. Other topics discussed in this thesis include a literature review, and a discussion of future work. There are plenty of options for future work on this topic, which hopefully this thesis can inspire. The intent of this thesis is to provide the foundation for future algorithms and other work in this area

    Optimal Dynamic Distributed MIS

    Full text link
    Finding a maximal independent set (MIS) in a graph is a cornerstone task in distributed computing. The local nature of an MIS allows for fast solutions in a static distributed setting, which are logarithmic in the number of nodes or in their degrees. The result trivially applies for the dynamic distributed model, in which edges or nodes may be inserted or deleted. In this paper, we take a different approach which exploits locality to the extreme, and show how to update an MIS in a dynamic distributed setting, either \emph{synchronous} or \emph{asynchronous}, with only \emph{a single adjustment} and in a single round, in expectation. These strong guarantees hold for the \emph{complete fully dynamic} setting: Insertions and deletions, of edges as well as nodes, gracefully and abruptly. This strongly separates the static and dynamic distributed models, as super-constant lower bounds exist for computing an MIS in the former. Our results are obtained by a novel analysis of the surprisingly simple solution of carefully simulating the greedy \emph{sequential} MIS algorithm with a random ordering of the nodes. As such, our algorithm has a direct application as a 33-approximation algorithm for correlation clustering. This adds to the important toolbox of distributed graph decompositions, which are widely used as crucial building blocks in distributed computing. Finally, our algorithm enjoys a useful \emph{history-independence} property, meaning the output is independent of the history of topology changes that constructed that graph. This means the output cannot be chosen, or even biased, by the adversary in case its goal is to prevent us from optimizing some objective function.Comment: 19 pages including appendix and reference

    Efficient self-stabilizing construction of disjoint MDSs in distance-2 model

    Get PDF
    We study the deterministic silent self-stabilizing construction of two disjoint minimal dominating sets (MDSs) in anonymous networks. We focus on algorithms where nodes share only their status (i.e. the name of their MDS to which they belong, if they belong to a MDS). We prove that such an algorithm cannot be designed in distance-1 model under a central daemon; therefore, we study this problem in the distance-2 model under a central daemon. We present an algorithm building two disjoint minimal dominating sets such that one of them is also a maximal independent set (MIS). Any execution of this algorithm converges in 5n moves. Our approach to compute this value is novel: the number of moves is not computed per node. We propose a second algorithm faster than the first one at the expense of the independence property of one of the constructed sets. A node executes at most 2 moves. If the network is not anonymous, the presented algorithms can be translated into a silent self-stabilizing algorithms converging in O(nnmm) moves in the distance-1 model under the distributed daemon where m is the number of edges and n the number of nodes. This improves the complexity of O(nn.mm) moves of proposed algorithms with the same assumptions

    Fast and compact self-stabilizing verification, computation, and fault detection of an MST

    Get PDF
    This paper demonstrates the usefulness of distributed local verification of proofs, as a tool for the design of self-stabilizing algorithms.In particular, it introduces a somewhat generalized notion of distributed local proofs, and utilizes it for improving the time complexity significantly, while maintaining space optimality. As a result, we show that optimizing the memory size carries at most a small cost in terms of time, in the context of Minimum Spanning Tree (MST). That is, we present algorithms that are both time and space efficient for both constructing an MST and for verifying it.This involves several parts that may be considered contributions in themselves.First, we generalize the notion of local proofs, trading off the time complexity for memory efficiency. This adds a dimension to the study of distributed local proofs, which has been gaining attention recently. Specifically, we design a (self-stabilizing) proof labeling scheme which is memory optimal (i.e., O(logn)O(\log n) bits per node), and whose time complexity is O(log2n)O(\log ^2 n) in synchronous networks, or O(Δlog3n)O(\Delta \log ^3 n) time in asynchronous ones, where Δ\Delta is the maximum degree of nodes. This answers an open problem posed by Awerbuch and Varghese (FOCS 1991). We also show that Ω(logn)\Omega(\log n) time is necessary, even in synchronous networks. Another property is that if ff faults occurred, then, within the requireddetection time above, they are detected by some node in the O(flogn)O(f\log n) locality of each of the faults.Second, we show how to enhance a known transformer that makes input/output algorithms self-stabilizing. It now takes as input an efficient construction algorithm and an efficient self-stabilizing proof labeling scheme, and produces an efficient self-stabilizing algorithm. When used for MST, the transformer produces a memory optimal self-stabilizing algorithm, whose time complexity, namely, O(n)O(n), is significantly better even than that of previous algorithms. (The time complexity of previous MST algorithms that used Ω(log2n)\Omega(\log^2 n) memory bits per node was O(n2)O(n^2), and the time for optimal space algorithms was O(nE)O(n|E|).) Inherited from our proof labelling scheme, our self-stabilising MST construction algorithm also has the following two properties: (1) if faults occur after the construction ended, then they are detected by some nodes within O(log2n)O(\log ^2 n) time in synchronous networks, or within O(Δlog3n)O(\Delta \log ^3 n) time in asynchronous ones, and (2) if ff faults occurred, then, within the required detection time above, they are detected within the O(flogn)O(f\log n) locality of each of the faults. We also show how to improve the above two properties, at the expense of some increase in the memory

    Beeping a Maximal Independent Set

    Full text link
    We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot, beeping nodes receive no feedback, while silent nodes can only differentiate between none of its neighbors beeping, or at least one of its neighbors beeping. We start by proving a lower bound that shows that in this model, it is not possible to locally converge to an MIS in sub-polynomial time. We then study four different relaxations of the model which allow us to circumvent the lower bound and find an MIS in polylogarithmic time. First, we show that if a polynomial upper bound on the network size is known, it is possible to find an MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if in addition to this wakeup assumption we allow sender-side collision detection, that is, beeping nodes can distinguish whether at least one neighboring node is beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if instead we endow nodes with synchronous clocks, it is also possible to find an MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192
    corecore