4,522 research outputs found

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies

    Channel Characterization for Chip-scale Wireless Communications within Computing Packages

    Get PDF
    Wireless Network-on-Chip (WNoC) appears as a promising alternative to conventional interconnect fabrics for chip-scale communications. WNoC takes advantage of an overlaid network composed by a set of millimeter-wave antennas to reduce latency and increase throughput in the communication between cores. Similarly, wireless inter-chip communication has been also proposed to improve the information transfer between processors, memory, and accelerators in multi-chip settings. However, the wireless channel remains largely unknown in both scenarios, especially in the presence of realistic chip packages. This work addresses the issue by accurately modeling flip-chip packages and investigating the propagation both its interior and its surroundings. Through parametric studies, package configurations that minimize path loss are obtained and the trade-offs observed when applying such optimizations are discussed. Single-chip and multi-chip architectures are compared in terms of the path loss exponent, confirming that the amount of bulk silicon found in the pathway between transmitter and receiver is the main determinant of losses.Comment: To be presented 12th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2018); Torino, Italy; October 201
    • …
    corecore