606 research outputs found

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks

    Get PDF
    The implementation of device-to-device (D2D) underlaying or overlaying pre-existing cellular networks has received much attention due to the potential of enhancing the total cell throughput, reducing power consumption and increasing the instantaneous data rate. In this paper we propose a distributed power allocation scheme for D2D OFDMA communications and, in particular, we consider the two operating modes amenable to a distributed implementation: dedicated and reuse modes. The proposed schemes address the problem of maximizing the users' sum rate subject to power constraints, which is known to be nonconvex and, as such, extremely difficult to be solved exactly. We propose here a fresh approach to this well-known problem, capitalizing on the fact that the power allocation problem can be modeled as a potential game. Exploiting the potential games property of converging under better response dynamics, we propose two fully distributed iterative algorithms, one for each operation mode considered, where each user updates sequentially and autonomously its power allocation. Numerical results, computed for several different user scenarios, show that the proposed methods, which converge to one of the local maxima of the objective function, exhibit performance close to the maximum achievable optimum and outperform other schemes presented in the literature

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Optimal Virtualized Inter-Tenant Resource Sharing for Device-to-Device Communications in 5G Networks

    Get PDF
    Device-to-Device (D2D) communication is expected to enable a number of new services and applications in future mobile networks and has attracted significant research interest over the last few years. Remarkably, little attention has been placed on the issue of D2D communication for users belonging to different operators. In this paper, we focus on this aspect for D2D users that belong to different tenants (virtual network operators), assuming virtualized and programmable future 5G wireless networks. Under the assumption of a cross-tenant orchestrator, we show that significant gains can be achieved in terms of network performance by optimizing resource sharing from the different tenants, i.e., slices of the substrate physical network topology. To this end, a sum-rate optimization framework is proposed for optimal sharing of the virtualized resources. Via a wide site of numerical investigations, we prove the efficacy of the proposed solution and the achievable gains compared to legacy approaches.Comment: 10 pages, 7 figure
    • …
    corecore