5,511 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Effective Performance Metrics for Multimedia Mission-critical Communication Systems

    Get PDF

    A participatory design approach for the development of support environments in eGovernment services to citizens

    Get PDF
    The introduction of eGovernment services and applications leads to major changes in the structure and operation of public administrations. In this paper we describe the work in progress in an Italian project called “SPO.T.” aimed at the analysis, development, deployment and evaluation of tools and environments to support the people who plan, deliver, use and evaluate user-centred provision of One-Stop-Shop services to citizens. The “SPO.T.” project has focused on two requirements: 1. the support tools and environments must facilitate the active involvement of all stakeholders in the definition and evolution of eGovernment applications and services, and it is argued that through participatory design changes of structure, process and culture can be delivered effectively; 2. they must embody a set of architecturally coherent resources which reflect the new roles and relationships of public administration and which are sufficiently generic to be relevant to a wide range of local contexts across the community

    Efficient Service for Next Generation Network Slicing Architecture and Mobile Traffic Analysis Using Machine Learning Technique

    Get PDF
    The tremendous growth of mobile devices, IOT devices, applications and many other services have placed high demand on mobile and wireless network infrastructures. Much research and development of 5G mobile networks have found the way to support the huge volume of traffic, extracting of fine-gained analytics and agile management of mobile network elements, so that it can maximize the user experience. It is very challenging to accomplish the tasks as mobile networks increase the complexity, due to increases in the high volume of data penetration, devices, and applications. One of the solutions, advance machine learning techniques, can help to mitigate the large number of data and algorithm driven applications. This work mainly focus on extensive analysis of mobile traffic for improving the performance, key performance indicators and quality of service from the operations perspective. The work includes the collection of datasets and log files using different kind of tools in different network layers and implementing the machine learning techniques to analyze the datasets to predict mobile traffic activity. A wide range of algorithms were implemented to compare the analysis in order to identify the highest performance. Moreover, this thesis also discusses about network slicing architecture its use cases and how to efficiently use network slicing to meet distinct demands

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test
    corecore