1,855 research outputs found

    Topologic Maps for Robotic Exploration of Underground Flooded Mines

    Get PDF
    The mapping of confined environments in mobile robotics is traditionally tackled in dense occupancy maps, requiring large amounts of storage. For some use cases, such as the exploration of flooded mines, the use of dense maps in processing slow down processes like path generation. I introduce a method of generating topological maps in constrained spaces such as mines. By taking a structure with fewer points, traversal and storage of explored space can be made more efficient, avoiding com plex graphs generated by methods like RRT and it’s variants. It’s simpler structure also allows for more intuitive human-machine interactions with it’s fewer points. I also introduce an autonomous frontier-based exploration approach to generate the topological map during exploration, taking advantage of it’s traversal to navigate through known space. With this work, simulation tests show it is possible to success fully extract a simpler graph structure describing the topology during autonomous exploration and that this structure is robust through explored regionsO mapeamento de ambientes confinados em robótica móvel, é tradicionalmente abordado em mapas densos de ocupação, necessitando de grandes quantidades de armazenamento. Para certos casos, tal como a exploração de minas submersas, o uso de mapas densos no processamento, atrasa processos como geração de caminhos. Utilizando uma estrutura com menos pontos, a travessia e o armazenamento de espaço explorado tornam-se mais eficientes, evitando grafos complexos gerados por métodos como RRT e variantes. A sua estrutura mais simples permite também interações homem-máquina com o seu número reduzido de pontos. Introduzo também uma abordagem autónoma de exploração baseada em fronteiras, para gerar o mapa topo lógico durante a exploração, tirando vantagem da travessia do mesmo para navegar por espaço conhecido. Com este trabalho, testes em simulação mostram ser possível extrair uma estrutura sob forma de grafo, descrevendo a topologia ao longo de explorações autónomas e que esta estrutura é robusta para a travessia em regiões explorada

    Solar rotation speed by detecting and tracking of Coronal Bright Points

    Get PDF
    Coronal Bright Points are one of many Solar manifestations that provide scientists evi-dences of its activity and are usually recognized by being small light dots, like scattered jewels. For many years these Bright Points have been overlooked due to another element of solar activity, sunspots, which drawn scientists full attention mainly because they were easier to detect. Never-theless, CBPs as a result of a clear distribution across all latitudes, provide better tracers to study Solar corona rotation. A literature review on CBPs detection and tracking unveiled limitations both in detection accuracy and lacking an automated image processing feature. The purpose of this dissertation was to present an alternative method for detecting CBPs using advanced image processing techniques and provide an automatic recognition software. The proposed methodology is divided into pre-processing methods, a segmentation section, post processing and a data evaluation approach to increase the CBP detection efficiency. As iden-tified by the study of the available data, pre-processing transformations were needed to ensure each image met certain specifications for future detection. The detection process includes a gra-dient based segmentation algorithm, previously developed for retinal image analysis, which is now successfully applied to this CBP case study. The outcome is the CBP list obtained by the detection algorithm which is then filtered and evaluated to remove false positives. To validate the proposed methodology, CBPs need to be tracked along time, to obtain the rotation of the Solar corona. Therefore, the images used in this study were taken from 19.3nm wavelength by the AIA 193 instrument on board of the Solar Dynamics Observatory (SDO) sat-ellite over 3 days during august 2010. These images allowed the perception of how CBPs angular rotation velocity not only depends on heliographic latitude, but also on other factors such as time. From the results obtained it was clear that the proposed methodology is an effective method to detect and track CBPs providing a consistent method for its detection

    NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1

    Get PDF
    The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis

    The slicing extent technique for fast ray tracing

    Get PDF
    A new technique for image generation using ray tracing is introduced. The “Slicing Extent Technique” (SET) partitions object space with slicing planes perpendicular to all three axes. Planes are divided into two dimensional rectangular cells, which contain pointers to nearby objects. Cell size and the space between slices varies, and is determined by the objects’ locations and orientations. Unlike oct-tree and other space-partitioning methods, SET is not primarily concerned with dividing space into mutually exclusive volume elements (‘voxels’) and identifying objects within each voxel. Instead, SET is based on analysis of projections of objects onto slicing planes. In comparison to the existing space subdivision methods for ray tracing, SET avoids tree traversal and exhibit no anomalous behavior. There is no reorganization when new objects arrive. Preprocessing to create slices is inexpensive and produces a finely tuned filter mechanism which supports rapid ray tracing

    An Investigation into Animating Plant Structures within Real-time Constraints

    Get PDF
    This paper is an analysis of current developments in rendering botanical structures for scientic and entertainment purposes with a focus on visualising growth. The choices of practical investigations produce a novel approach for parallel parsing of difficult bracketed L-Systems, based upon the work of Lipp, Wonka and Wimmer (2010). Alongside this is a general overview of the issues involved when looking at growing systems, technical details involving programming for the Graphics Processing Unit (GPU) and other possible solutions for further work that also could achieve the project's goals

    A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds

    Get PDF
    Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points and no rays passed through the area). Voids in the voxel space are manifested as unsampled voxels. A similar line-of-sight analysis can then be used to pinpoint locations at aircraft altitude at which the voids in the point clouds could theoretically be imaged. This work is based on the assumption that inclusion of more images of the void areas in the 3D reconstruction process will reduce the number of voids in the point cloud that were a result of lack of coverage. Voids resulting from texturally difficult areas will not benefit from more imagery in the reconstruction process, and thus are identified and removed prior to the determination of future potential imaging locations

    Edge Based RGB-D SLAM and SLAM Based Navigation

    Get PDF

    Reliable Navigation for SUAS in Complex Indoor Environments

    Get PDF
    Indoor environments are a particular challenge for Unmanned Aerial Vehicles (UAVs). Effective navigation through these GPS-denied environments require alternative localization systems, as well as methods of sensing and avoiding obstacles while remaining on-task. Additionally, the relatively small clearances and human presence characteristic of indoor spaces necessitates a higher level of precision and adaptability than is common in traditional UAV flight planning and execution. This research blends the optimization of individual technologies, such as state estimation and environmental sensing, with system integration and high-level operational planning. The combination of AprilTag visual markers, multi-camera Visual Odometry, and IMU data can be used to create a robust state estimator that describes position, velocity, and rotation of a multicopter within an indoor environment. However these data sources have unique, nonlinear characteristics that should be understood to effectively plan for their usage in an automated environment. The research described herein begins by analyzing the unique characteristics of these data streams in order to create a highly-accurate, fault-tolerant state estimator. Upon this foundation, the system built, tested, and described herein uses Visual Markers as navigation anchors, visual odometry for motion estimation and control, and then uses depth sensors to maintain an up-to-date map of the UAV\u27s immediate surroundings. It develops and continually refines navigable routes through a novel combination of pre-defined and sensory environmental data. Emphasis is put on the real-world development and testing of the system, through discussion of computational resource management and risk reduction

    Radiation techniques for urban thermal simulation with the Finite Element Method

    Get PDF
    Modern societies are increasingly organized in cities. In the present times, more than half of the world’s population lives in urban settlements. In this context, architectural and building scale works have the need of extending their scope to the urban environment. One of the main challenges of these times is understanting all the thermal exchanges that happen in the city. The radiative part appears as the less developed one; its characterization and interaction with built structures has gained attention for building physics, architecture and environmental engineering. Providing a linkage between these areas, the emerging field of urban physics has become important for tackling studies of such nature. Urban thermal studies are intrinsically linked to multidisciplinary work approaches. Performing full-scale measurements is hard, and prototype models are difficult to develop. Therefore, computational simulations are essential in order to understand how the city behaves and to evaluate projected modifications. The methodological and algorithmic improvement of simulation is one of the mainlines of work for computational physics and many areas of computer science. The field of computer graphics has addressed the adaptation of rendering algorithms to daylighting using physically-based radiation models on architectural scenes. The Finite Element Method (FEM) has been widely used for thermal analysis. The maturity achieved by FEM software allows for treating very large models with a high geometrical detail and complexity. However, computing radiation exchanges in this context implies a hard computational challenge, and forces to push the limits of existing physical models. Computer graphics techniques can be adapted to FEM to estimate solar loads. In the thermal radiation range, the memory requirements for storing the interaction between the elements grows because all the urban surfaces become radiation sources. In this thesis, a FEM-based methodology for urban thermal analysis is presented. A set of radiation techniques (both for solar and thermal radiation) are developed and integrated into the FEM software Cast3m. Radiosity and ray tracing are used as the main algorithms for radiation computations. Several studies are performed for different city scenes. The FEM simulation results are com-pared with measured temperature results obtained by means of urban thermography. Post-processing techniques are used to obtain rendered thermograms, showing that the proposed methodology pro-duces accurate results for the cases analyzed. Moreover, its good computational performance allows for performing this kind of study using regular desktop PCs.Las sociedades modernas están cada vez más organizadas en ciudades. Más de la mitad de la población mundial vive en asentamientos urbanos en la actualidad. En este contexto, los trabajos a escala arquitectónica y de edificio deben extender su alcance al ambiente urbano. Uno de los mayores desafíos de estos tiempos consiste en entender todos los intercambios térmicos que suceden en la ciudad. La parte radiativa es la menos desarrollada; su caracterización y su interacción con edificaciones ha ganado la atención de la física de edificios, la arquitectura y la ingeniería ambiental. Como herramienta de conexión entre estas áreas, la física urbana es un área que resulta importante para atacar estudios de tal naturaleza. Los estudios térmicos urbanos están intrinsecamente asociados a trabajos multidisciplinarios. Llevar a cabo mediciones a escala real resulta difícil, y el desarrollo de prototipos de menor escala es complejo. Por lo tanto, la simulación computacional es esencial para entender el comportamiento de la ciudad y para evaluar modificaciones proyectadas. La mejora metodológica y algorítmica de las simulaciones es una de las mayores líneas de trabajo para la física computacional y muchas áreas de las ciencias de la computación. El área de la computación gráfica ha abordado la adaptación de algoritmos de rendering para cómputo de iluminación natural, utilizando modelos de radiación basados en la física y aplicándolos sobre escenas arquitectónicas. El Método de Elementos Finitos (MEF) ha sido ampliamente utilizado para análisis térmico. La madurez alcanzada por soluciones de software MEF permite tratar grandes modelos con un alto nivel de detalle y complejidad geométrica. Sin embargo, el cómputo del intercambio radiativo en este contexto implica un desafío computacional, y obliga a empujar los límites de las descripciones físicas conocidas. Algunas técnicas de computación gráfica pueden ser adaptadas a MEF para estimar las cargas solares. En el espectro de radiación térmica, los requisitos de memoria necesarios para almacenar la interacción entre los elementos crecen debido a que todas las superficies urbanas se transforman en fuentes emisoras de radiación. En esta tesis se presenta una metodología basada en MEF para el análisis térmico de escenas urbanas. Un conjunto de técnicas de radiación (para radiación solar y térmica) son desarrolladas e integradas en el software MEF Cast3m. Los algoritmos de radiosidad y ray tracing son utilizados para el cómputo radiativo. Se presentan varios estudios que utilizan diferentes modelos de ciudades. Los resultados obtenidos mediante MEF son comparados con temperaturas medidas por medio de termografías urbanas. Se utilizan técnicas de post-procesamiento para renderizar imágenes térmicas, que permiten concluir que la metodología propuesta produce resultados precisos para los casos analizados. Asimismo, su buen desempeño computacional posibilita realizar este tipo de estudios en computadoras personales
    corecore