1,012 research outputs found

    LiteMat: a scalable, cost-efficient inference encoding scheme for large RDF graphs

    Full text link
    The number of linked data sources and the size of the linked open data graph keep growing every day. As a consequence, semantic RDF services are more and more confronted with various "big data" problems. Query processing in the presence of inferences is one them. For instance, to complete the answer set of SPARQL queries, RDF database systems evaluate semantic RDFS relationships (subPropertyOf, subClassOf) through time-consuming query rewriting algorithms or space-consuming data materialization solutions. To reduce the memory footprint and ease the exchange of large datasets, these systems generally apply a dictionary approach for compressing triple data sizes by replacing resource identifiers (IRIs), blank nodes and literals with integer values. In this article, we present a structured resource identification scheme using a clever encoding of concepts and property hierarchies for efficiently evaluating the main common RDFS entailment rules while minimizing triple materialization and query rewriting. We will show how this encoding can be computed by a scalable parallel algorithm and directly be implemented over the Apache Spark framework. The efficiency of our encoding scheme is emphasized by an evaluation conducted over both synthetic and real world datasets.Comment: 8 pages, 1 figur

    [Demo] Low-latency spark queries on updatable data

    Get PDF
    As data science gets deployed more and more into operational applications, it becomes important for data science frameworks to be able to perform computations in interactive, sub-second time. Indexing and caching are two key techniques that can make interactive query processing on large datasets possible. In this demo, we show the design, implementation and performance of a new indexing abstraction in Apache Spark, called the Indexed DataFrame. This is a cached DataFrame that incorporates an index to support fast lookup and join operations, and supports updates with multi-version concurrency. We demonstrate the Indexed Dataframe on a social network dataset using microbench-marks and real-world graph processing queries, in datasets that are continuously growing

    A Design Framework for Efficient Distributed Analytics on Structured Big Data

    Get PDF
    Distributed analytics architectures are often comprised of two elements: a compute engine and a storage system. Conventional distributed storage systems usually store data in the form of files or key-value pairs. This abstraction simplifies how the data is accessed and reasoned about by an application developer. However, the separation of compute and storage systems makes it difficult to optimize costly disk and network operations. By design the storage system is isolated from the workload and its performance requirements such as block co-location and replication. Furthermore, optimizing fine-grained data access requests becomes difficult as the storage layer is hidden away behind such abstractions. Using a clean slate approach, this thesis proposes a modular distributed analytics system design which is centered around a unified interface for distributed data objects named the DDO. The interface couples key mechanisms that utilize storage, memory, and compute resources. This coupling makes it ideal to optimize data access requests across all memory hierarchy levels, with respect to the workload and its performance requirements. In addition to the DDO, a complementary DDO controller implementation controls the logical view of DDOs, their replication, and distribution across the cluster. A proof-of-concept implementation shows improvement in mean query time by 3-6x on the TPC-H and TPC-DS benchmarks, and more than an order of magnitude improvement in many cases
    • …
    corecore