27,202 research outputs found

    Selective and Efficient Quantum Process Tomography

    Full text link
    In this paper we describe in detail and generalize a method for quantum process tomography that was presented in [A. Bendersky, F. Pastawski, J. P. Paz, Physical Review Letters 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ\chi--matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required to implement it scale polynomically with the number of qubits of the system. The estimation of all diagonal elements of the χ\chi--matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, that is based on efficient estimation by random sampling over a set of states forming a 2--design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown.Comment: 9 pages, 5 figure

    Quantum Process Tomography: Resource Analysis of Different Strategies

    Get PDF
    Characterization of quantum dynamics is a fundamental problem in quantum physics and quantum information science. Several methods are known which achieve this goal, namely Standard Quantum Process Tomography (SQPT), Ancilla-Assisted Process Tomography (AAPT), and the recently proposed scheme of Direct Characterization of Quantum Dynamics (DCQD). Here, we review these schemes and analyze them with respect to some of the physical resources they require. Although a reliable figure-of-merit for process characterization is not yet available, our analysis can provide a benchmark which is necessary for choosing the scheme that is the most appropriate in a given situation, with given resources. As a result, we conclude that for quantum systems where two-body interactions are not naturally available, SQPT is the most efficient scheme. However, for quantum systems with controllable two-body interactions, the DCQD scheme is more efficient than other known QPT schemes in terms of the total number of required elementary quantum operations.Comment: 15 pages, 5 figures, published versio
    • …
    corecore