338 research outputs found

    Closed-loop inverse kinematics for redundant robots: Comparative assessment and two enhancements

    Get PDF
    Motivated by the need of a robust and practical Inverse Kinematics (IK) algorithm for the WAM robot arm, we reviewed the most used Closed-Loop IK (CLIK) methods for redundant robots, analysing their main points of concern: convergence, numerical error, singularity handling, joint limit avoidance, and the capability of reaching secondary goals. As a result of the experimental comparison, we propose two enhancements. The first is a new filter for the singular values of the Jacobian matrix that guarantees that its conditioning remains stable, while none of the filters found in literature is successful at doing so. The second is to combine a continuous task priority strategy with selective damping to generate smoother trajectories. Experimentation on the WAM robot arm shows that these two enhancements yield an IK algorithm that improves on the reviewed state-of-the-art ones, in terms of the good compromise it achieves between time step length, Jacobian conditioning, multiple task performance, and computational time, thus constituting a very solid option in practice. This proposal is general and applicable to other redundant robots.This research is partially funded by the CSIC project CINNOVA (201150E088) and the Catalan grant 2009SGR155. A. Colomé is also supported by the Spanish Ministry of Education, Culture and Sport via a FPU doctoral grant (AP2010-1989).Peer Reviewe

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Beyond Jacobian-based tasks: Extended set-based tasks for multi-task execution and prioritization

    Full text link
    The ability of executing multiple tasks simultaneously is an important feature of redundant robotic systems. As a matter of fact, complex behaviors can often be obtained as a result of the execution of several tasks. Moreover, in safety-critical applications, tasks designed to ensure the safety of the robot and its surroundings have to be executed along with other nominal tasks. In such cases, it is also important to prioritize the former over the latter. In this paper, we formalize the definition of extended set-based tasks, i.e., tasks which can be executed by rendering subsets of the task space asymptotically stable or forward invariant. We propose a mathematical representation of such tasks that allows for the execution of more complex and time-varying prioritized stacks of tasks using kinematic and dynamic robot models alike. We present and analyze an optimization-based framework which is computationally efficient, accounts for input bounds, and allows for the stable execution of time-varying prioritized stacks of extended set-based tasks. The proposed framework is validated using extensive simulations and experiments with robotic manipulators

    Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    Get PDF
    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace

    Control of Redundant Robots Under Hard Joint Constraints: Saturation in the Null Space

    Get PDF
    We present an efficient method for addressing online the inversion of differential task kinematics for redundant manipulators, in the presence of hard limits on joint space motion that can never be violated. The proposed SNS (Saturation in the Null Space) algorithm proceeds by successively discarding the use of joints that would exceed their motion bounds when using the minimum norm solution. When processing multiple tasks with priority, the SNS method realizes a preemptive strategy by preserving the correct order of priority in spite of the presence of saturations. In the single- and multi-task case, the algorithm automatically integrates a least possible task scaling procedure, when an original task is found to be unfeasible. The optimality properties of the SNS algorithm are analyzed by considering an associated Quadratic Programming problem. Its solution leads to a variant of the algorithm, which guarantees optimality also when the basic SNS algorithm does not. Numerically efficient versions of these algorithms are proposed. Their performance allows real-time control of robots executing many prioritized tasks with a large number of hard bounds. Experimental results are reported

    Prioritized motion-force control of constrained fully-actuated robots: "Task Space Inverse Dynamics"

    Get PDF
    Pre-print submitted to "Robotics and Autonomous Systems"We present a new framework for prioritized multi-task motion-force control of fully-actuated robots. This work is established on a careful review and comparison of the state of the art. Some control frameworks are not optimal, that is they do not find the optimal solution for the secondary tasks. Other frameworks are optimal, but they tackle the control problem at kinematic level, hence they neglect the robot dynamics and they do not allow for force control. Still other frameworks are optimal and consider force control, but they are computationally less efficient than ours. Our final claim is that, for fully-actuated robots, computing the operational-space inverse dynamics is equivalent to computing the inverse kinematics (at acceleration level) and then the joint-space inverse dynamics. Thanks to this fact, our control framework can efficiently compute the optimal solution by decoupling kinematics and dynamics of the robot. We take into account: motion and force control, soft and rigid contacts, free and constrained robots. Tests in simulation validate our control framework, comparing it with other state-of-the-art equivalent frameworks and showing remarkable improvements in optimality and efficiency

    A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control

    Get PDF
    The task priority based control is a formalism which allows to create complex control laws with nice invariance properties, i.e. lower priority tasks do not affect the execution of higher priority ones. However, the classical task priority framework (Siciliano and Slotine) lacked the ability of enabling and disabling tasks without causing discontinuities. Furthermore, tasks corresponding to inequality control objectives could not be efficiently represented within that framework. In this paper we present a novel technique to integrate both the activation and deactivation of tasks and the inequality control objectives in the priority based control. The technique, called iCAT (inequality control objectives, activations and transitions) task priority framework, exploits novel regularization methods to activate and deactivate any row of a given task in a prioritized hierarchy without incurring in practical discontinuities, while maintaining as much as possible the invariance properties of the other active tasks. Finally, as opposed to other techniques, the proposed approach has a linear cost in the number of tasks. Simulations, experimental results and a time analysis are presented to support the proposed technique
    • …
    corecore