8,721 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Dynamic Voltage Scaling Techniques for Energy Efficient Synchronized Sensor Network Design

    Get PDF
    Building energy-efficient systems is one of the principal challenges in wireless sensor networks. Dynamic voltage scaling (DVS), a technique to reduce energy consumption by varying the CPU frequency on the fly, has been widely used in other settings to accomplish this goal. In this paper, we show that changing the CPU frequency can affect timekeeping functionality of some sensor platforms. This phenomenon can cause an unacceptable loss of time synchronization in networks that require tight synchrony over extended periods, thus preventing all existing DVS techniques from being applied. We present a method for reducing energy consumption in sensor networks via DVS, while minimizing the impact of CPU frequency switching on time synchronization. The system is implemented and evaluated on a network of 11 Imote2 sensors mounted on a truss bridge and running a high-fidelity continuous structural health monitoring application. Experimental measurements confirm that the algorithm significantly reduces network energy consumption over the same network that does not use DVS, while requiring significantly fewer re-synchronization actions than a classic DVS algorithm.unpublishedis peer reviewe

    Powertrace: Network-level Power Profiling for Low-power Wireless Networks

    Get PDF
    Low-power wireless networks are quickly becoming a critical part of our everyday infrastructure. Power consumption is a critical concern, but power measurement and estimation is a challenge. We present Powertrace, which to the best of our knowledge is the first system for network-level power profiling of low-power wireless systems. Powertrace uses power state tracking to estimate system power consumption and a structure called energy capsules to attribute energy consumption to activities such as packet transmissions and receptions. With Powertrace, the power consumption of a system can be broken down into individual activities which allows us to answer questions such as “How much energy is spent forwarding packets for node X?”, “How much energy is spent on control traffic and how much on critical data?”, and “How much energy does application X account for?”. Experiments show that Powertrace is accurate to 94% of the energy consumption of a device. To demonstrate the usefulness of Powertrace, we use it to experimentally analyze the power behavior of the proposed IETF standard IPv6 RPL routing protocol and a sensor network data collection protocol. Through using Powertrace, we find the highest power consumers and are able to reduce the power consumption of data collection with 24%. It is our hope that Powertrace will help the community to make empirical energy evaluation a widely used tool in the low-power wireless research community toolbox

    Amulet: An Energy-Efficient, Multi-Application Wearable Platform

    Get PDF
    Wearable technology enables a range of exciting new applications in health, commerce, and beyond. For many important applications, wearables must have battery life measured in weeks or months, not hours and days as in most current devices. Our vision of wearable platforms aims for long battery life but with the flexibility and security to support multiple applications. To achieve long battery life with a workload comprising apps from multiple developers, these platforms must have robust mechanisms for app isolation and developer tools for optimizing resource usage.\r\n\r\nWe introduce the Amulet Platform for constrained wearable devices, which includes an ultra-low-power hardware architecture and a companion software framework, including a highly efficient event-driven programming model, low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. We present the design and evaluation of our prototype Amulet hardware and software, and show how the framework enables developers to write energy-efficient applications. Our prototype has battery lifetime lasting weeks or even months, depending on the application, and our interactive resource-profiling tool predicts battery lifetime within 6-10% of the measured lifetime

    Optimizing the flash-RAM energy trade-off in deeply embedded systems

    Full text link
    Deeply embedded systems often have the tightest constraints on energy consumption, requiring that they consume tiny amounts of current and run on batteries for years. However, they typically execute code directly from flash, instead of the more energy efficient RAM. We implement a novel compiler optimization that exploits the relative efficiency of RAM by statically moving carefully selected basic blocks from flash to RAM. Our technique uses integer linear programming, with an energy cost model to select a good set of basic blocks to place into RAM, without impacting stack or data storage. We evaluate our optimization on a common ARM microcontroller and succeed in reducing the average power consumption by up to 41% and reducing energy consumption by up to 22%, while increasing execution time. A case study is presented, where an application executes code then sleeps for a period of time. For this example we show that our optimization could allow the application to run on battery for up to 32% longer. We also show that for this scenario the total application energy can be reduced, even if the optimization increases the execution time of the code

    A New Approach for Quality Management in Pervasive Computing Environments

    Full text link
    This paper provides an extension of MDA called Context-aware Quality Model Driven Architecture (CQ-MDA) which can be used for quality control in pervasive computing environments. The proposed CQ-MDA approach based on ContextualArchRQMM (Contextual ARCHitecture Quality Requirement MetaModel), being an extension to the MDA, allows for considering quality and resources-awareness while conducting the design process. The contributions of this paper are a meta-model for architecture quality control of context-aware applications and a model driven approach to separate architecture concerns from context and quality concerns and to configure reconfigurable software architectures of distributed systems. To demonstrate the utility of our approach, we use a videoconference system.Comment: 10 pages, 10 Figures, Oral Presentation in ECSA 201

    A Multilevel Introspective Dynamic Optimization System For Holistic Power-Aware Computing

    Get PDF
    Power consumption is rapidly becoming the dominant limiting factor for further improvements in computer design. Curiously, this applies both at the "high end" of workstations and servers and the "low end" of handheld devices and embedded computers. At the high-end, the challenge lies in dealing with exponentially growing power densities. At the low-end, there is a demand to make mobile devices more powerful and longer lasting, but battery technology is not improving at the same rate that power consumption is rising. Traditional power-management research is fragmented; techniques are being developed at specific levels, without fully exploring their synergy with other levels. Most software techniques target either operating systems or compilers but do not explore the interaction between the two layers. These techniques also have not fully explored the potential of virtual machines for power management. In contrast, we are developing a system that integrates information from multiple levels of software and hardware, connecting these levels through a communication channel. At the heart of this system are a virtual machine that compiles and dynamically profiles code, and an optimizer that reoptimizes all code, including that of applications and the virtual machine itself. We believe this introspective, holistic approach enables more informed power-management decisions
    • …
    corecore