81,707 research outputs found

    Efficiently Computing Real Roots of Sparse Polynomials

    Full text link
    We propose an efficient algorithm to compute the real roots of a sparse polynomial fR[x]f\in\mathbb{R}[x] having kk non-zero real-valued coefficients. It is assumed that arbitrarily good approximations of the non-zero coefficients are given by means of a coefficient oracle. For a given positive integer LL, our algorithm returns disjoint disks Δ1,,ΔsC\Delta_{1},\ldots,\Delta_{s}\subset\mathbb{C}, with s<2ks<2k, centered at the real axis and of radius less than 2L2^{-L} together with positive integers μ1,,μs\mu_{1},\ldots,\mu_{s} such that each disk Δi\Delta_{i} contains exactly μi\mu_{i} roots of ff counted with multiplicity. In addition, it is ensured that each real root of ff is contained in one of the disks. If ff has only simple real roots, our algorithm can also be used to isolate all real roots. The bit complexity of our algorithm is polynomial in kk and logn\log n, and near-linear in LL and τ\tau, where 2τ2^{-\tau} and 2τ2^{\tau} constitute lower and upper bounds on the absolute values of the non-zero coefficients of ff, and nn is the degree of ff. For root isolation, the bit complexity is polynomial in kk and logn\log n, and near-linear in τ\tau and logσ1\log\sigma^{-1}, where σ\sigma denotes the separation of the real roots

    Computationally efficient approximations of the joint spectral radius

    Full text link
    The joint spectral radius of a set of matrices is a measure of the maximal asymptotic growth rate that can be obtained by forming long products of matrices taken from the set. This quantity appears in a number of application contexts but is notoriously difficult to compute and to approximate. We introduce in this paper a procedure for approximating the joint spectral radius of a finite set of matrices with arbitrary high accuracy. Our approximation procedure is polynomial in the size of the matrices once the number of matrices and the desired accuracy are fixed

    Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

    Get PDF
    Polynomial approximations to boolean functions have led to many positive results in computer science. In particular, polynomial approximations to the sign function underly algorithms for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this work, we investigate the limits of these techniques by proving inapproximability results for the sign function. Firstly, the polynomial regression algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be learned with respect to log-concave distributions on Rn\mathbb{R}^n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We ask whether this technique can be extended beyond log-concave distributions, and establish a negative result. We show that polynomials of any degree cannot approximate the sign function to within arbitrarily low error for a large class of non-log-concave distributions on the real line, including those with densities proportional to exp(x0.99)\exp(-|x|^{0.99}). Secondly, we investigate the derandomization of Chernoff-type concentration inequalities. Chernoff-type tail bounds on sums of independent random variables have pervasive applications in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that these inequalities can be established for sums of random variables with only O(log(1/δ))O(\log(1/\delta))-wise independence, for a tail probability of δ\delta. We show that their results are tight up to constant factors. These results rely on techniques from weighted approximation theory, which studies how well functions on the real line can be approximated by polynomials under various distributions. We believe that these techniques will have further applications in other areas of computer science.Comment: 22 page

    How to decompose arbitrary continuous-variable quantum operations

    Full text link
    We present a general, systematic, and efficient method for decomposing any given exponential operator of bosonic mode operators, describing an arbitrary multi-mode Hamiltonian evolution, into a set of universal unitary gates. Although our approach is mainly oriented towards continuous-variable quantum computation, it may be used more generally whenever quantum states are to be transformed deterministically, e.g. in quantum control, discrete-variable quantum computation, or Hamiltonian simulation. We illustrate our scheme by presenting decompositions for various nonlinear Hamiltonians including quartic Kerr interactions. Finally, we conclude with two potential experiments utilizing offline-prepared optical cubic states and homodyne detections, in which quantum information is processed optically or in an atomic memory using quadratic light-atom interactions.Comment: Ver. 3: published version with supplementary materia
    corecore