1,263 research outputs found

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation

    Get PDF
    Growing interest in eXplainable Artificial Intelligence (XAI) aims to make AI and machine learning more understandable to human users. However, most existing work focuses on new algorithms, and not on usability, practical interpretability and efficacy on real users. In this vision paper, we propose a new research area of eXplainable AI for Designers (XAID), specifically for game designers. By focusing on a specific user group, their needs and tasks, we propose a human-centered approach for facilitating game designers to co-create with AI/ML techniques through XAID. We illustrate our initial XAID framework through three use cases, which require an understanding both of the innate properties of the AI techniques and users' needs, and we identify key open challenges.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work publicComp Graphics & Visualisatio

    Recognizing Teamwork Activity In Observations Of Embodied Agents

    Get PDF
    This thesis presents contributions to the theory and practice of team activity recognition. A particular focus of our work was to improve our ability to collect and label representative samples, thus making the team activity recognition more efficient. A second focus of our work is improving the robustness of the recognition process in the presence of noisy and distorted data. The main contributions of this thesis are as follows: We developed a software tool, the Teamwork Scenario Editor (TSE), for the acquisition, segmentation and labeling of teamwork data. Using the TSE we acquired a corpus of labeled team actions both from synthetic and real world sources. We developed an approach through which representations of idealized team actions can be acquired in form of Hidden Markov Models which are trained using a small set of representative examples segmented and labeled with the TSE. We developed set of team-oriented feature functions, which extract discrete features from the high-dimensional continuous data. The features were chosen such that they mimic the features used by humans when recognizing teamwork actions. We developed a technique to recognize the likely roles played by agents in teams even before the team action was recognized. Through experimental studies we show that the feature functions and role recognition module significantly increase the recognition accuracy, while allowing arbitrary shuffled inputs and noisy data

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Non-determinism in the narrative structure of video games

    Get PDF
    PhD ThesisAt the present time, computer games represent a finite interactive system. Even in their more experimental forms, the number of possible interactions between player and NPCs (non-player characters) and among NPCs and the game world has a finite number and is led by a deterministic system in which events can therefore be predicted. This implies that the story itself, seen as the series of events that will unfold during gameplay, is a closed system that can be predicted a priori. This study looks beyond this limitation, and identifies the elements needed for the emergence of a non-finite, emergent narrative structure. Two major contributions are offered through this research. The first contribution comes in the form of a clear categorization of the narrative structures embracing all video game production since the inception of the medium. In order to look for ways to generate a non-deterministic narrative in games, it is necessary to first gain a clear understanding of the current narrative structures implemented and how their impact on users’ experiencing of the story. While many studies have observed the storytelling aspect, no attempt has been made to systematically distinguish among the different ways designers decide how stories are told in games. The second contribution is guided by the following research question: Is it possible to incorporate non-determinism into the narrative structure of computer games? The hypothesis offered is that non-determinism can be incorporated by means of nonlinear dynamical systems in general and Cellular Automata in particular

    Toward human-like pathfinding with hierarchical approaches and the GPS of the brain theory

    Get PDF
    Pathfinding for autonomous agents and robots has been traditionally driven by finding optimal paths. Where typically optimality means finding the shortest path between two points in a given environment. However, optimality may not always be strictly necessary. For example, in the case of video games, often computing the paths for non-player characters (NPC) must be done under strict time constraints to guarantee real time simulation. In those cases, performance is more important than finding the shortest path, specially because often a sub-optimal path can be just as convincing from the point of view of the player. When simulating virtual humanoids, pathfinding has also been used with the same goal: finding the shortest path. However, humans very rarely follow precise shortest paths, and thus there are other aspects of human decision making and path planning strategies that should be incorporated in current simulation models. In this thesis we first focus on improving performance optimallity to handle as many virtual agents as possible, and then introduce neuroscience research to propose pathfinding algorithms that attempt to mimic humans in a more realistic manner.In the case of simulating NPCs for video games, one of the main challenges is to compute paths as efficiently as possible for groups of agents. As both the size of the environments and the number of autonomous agents increase, it becomes harder to obtain results in real time under the constraints of memory and computing resources. For this purpose we explored hierarchical approaches for two reasons: (1) they have shown important performance improvements for regular grids and other abstract problems, and (2) humans tend to plan trajectories also following an topbottom abstraction, focusing first on high level location and then refining the path as they move between those high level locations. Therefore, we believe that hierarchical approaches combine the best of our two goals: improving performance for multi-agent pathfinding and achieving more human-like pathfinding. Hierarchical approaches, such as HNA* (Hierarchical A* for Navigation Meshes) can compute paths more efficiently, although only for certain configurations of the hierarchy. For other configurations, the method suffers from a bottleneck in the step that connects the Start and Goal positions with the hierarchy. This bottleneck can drop performance drastically.In this thesis we present different approaches to solve the HNA* bottleneck and thus obtain a performance boost for all hierarchical configurations. The first method relies on further memory storage, and the second one uses parallelism on the GPU. Our comparative evaluation shows that both approaches offer speed-ups as high as 9x faster than A*, and show no limitations based on hierarchical configuration. Then we further exploit the potential of CUDA parallelism, to extend our implementation to HNA* for multi-agent path finding. Our method can now compute paths for over 500K agents simultaneously in real-time, with speed-ups above 15x faster than a parallel multi-agent implementation using A*. We then focus on studying neurosience research to learn about the way that humans build mental maps, in order to propose novel algorithms that take those finding into account when simulating virtual humans. We propose a novel algorithm for path finding that is inspired by neuroscience research on how the brain learns and builds cognitive maps. Our method represents the space as a hexagonal grid, based on the GPS of the brain theory, and fires memory cells as counters. Our path finder then combines a method for exploring unknown environments while building such a cognitive map, with an A* search using a modified heuristic that takes into account the GPS of the brain cognitive map.El problema de Pathfinding para agentes autónomos o robots, ha consistido tradicionalmente en encontrar un camino óptimo, donde por óptimo se entiende el camino de distancia mínima entre dos posiciones de un entorno. Sin embargo, en ocasiones puede que no sea estrictamente necesario encontrar una solución óptima. Para ofrecer la simulación de multitudes de agentes autónomos moviéndose en tiempo real, es necesario calcular sus trayectorias bajo condiciones estrictas de tiempo de computación, pero no es fundamental que las soluciones sean las de distancia mínima ya que, con frecuencia, el observador no apreciará la diferencia entre un camino óptimo y un sub-óptimo. Por tanto, suele ser suficiente con que la solución encontrada sea visualmente creíble para el observado. Cuando se simulan humanoides virtuales en aplicaciones de realidad virtual que requieren avatares que simulen el comportamiento de los humanos, se tiende a emplear los mismos algoritmos que en video juegos, con el objetivo de encontrar caminos de distancia mínima. Pero si realmente queremos que los avatares imiten el comportamiento humano, tenemos que tener en cuenta que, en el mundo real, los humanos rara vez seguimos precisamente el camino más corto, y por tanto se deben considerar otros aspectos que influyen en la toma de decisiones de los humanos y la selección de rutas en el mundo real. En esta tesis nos centraremos primero en mejorar el rendimiento de la búsqueda de caminos para poder simular grandes números de humanoides virtuales autónomos, y a continuación introduciremos conceptos de investigación con mamíferos en neurociencia, para proponer soluciones al problema de pathfinding que intenten imitar con mayor realismo, el modo en el que los humanos navegan el entorno que les rodea. A medida que aumentan tanto el tamaño de los entornos virtuales como el número de agentes autónomos, resulta más difícil obtener soluciones en tiempo real, debido a las limitaciones de memoria y recursos informáticos. Para resolver este problema, en esta tesis exploramos enfoques jerárquicos porque consideramos que combinan dos objetivos fundamentales: mejorar el rendimiento en la búsqueda de caminos para multitudes de agentes y lograr una búsqueda de caminos similar a la de los humanos. El primer método presentado en esta tesis se basa en mejorar el rendimiento del algoritmo HNA* (Hierarchical A* for Navigation Meshes) incrementando almacenamiento de datos en memoria, y el segundo utiliza el paralelismo para mejorar drásticamente el rendimiento. La evaluación cuantitativa realizada en esta tesis, muestra que ambos enfoques ofrecen aceleraciones que pueden llegar a ser hasta 9 veces más rápidas que el algoritmo A* y no presentan limitaciones debidas a la configuración jerárquica. A continuación, aprovechamos aún más el potencial del paralelismo ofrecido por CUDA para extender nuestra implementación de HNA* a sistemas multi-agentes. Nuestro método permite calcular caminos simultáneamente y en tiempo real para más de 500.000 agentes, con una aceleración superior a 15 veces la obtenida por una implementación paralela del algoritmo A*. Por último, en esta tesis nos hemos centrado en estudiar los últimos avances realizados en el ámbito de la neurociencia, para comprender la manera en la que los humanos construyen mapas mentales y poder así proponer nuevos algoritmos que imiten de forma más real el modo en el que navegamos los humanos. Nuestro método representa el espacio como una red hexagonal, basada en la distribución de ¿place cells¿ existente en el cerebro, e imita las activaciones neuronales como contadores en dichas celdas. Nuestro buscador de rutas combina un método para explorar entornos desconocidos mientras construye un mapa cognitivo hexagonal, utilizando una búsqueda A* con una nueva heurística adaptada al mapa cognitivo del cerebro y sus contadores

    Capturing and Scaffolding the Complexities of Self-Regulation During Game-Based Learning

    Get PDF
    Game-based learning environments (GBLEs) can offer students with engaging interactive instructional materials while also providing a research platform to investigate the dynamics and intricacies of effective self-regulated learning (SRL). Past research has indicated learners are often unable to monitor and regulate their cognitive and metacognitive processes within GBLEs accurately and effectively on their own due mostly to the open-ended nature of these environments. The future design and development of GBLEs and embedded scaffolds, therefore, require a better understanding of the discrepancies between the affordances of GBLEs and the required use of SRL. Specifically, how to incorporate interdisciplinary theories and concepts outside of traditional educational, learning, and psychological sciences literature, how to utilize process data to measure SRL processes during interactions with instructional materials accounting for the dynamics of leaners\u27 SRL, and how to improve SRL-driven scaffolds to be individualized and adaptive based on the level of agency GBLEs provide. Across four studies, this dissertation investigates learners\u27 SRL while they learn about microbiology using CRYSTAL ISLAND, a GBLE, building upon each other by enhancing the type of data collected, analytical methodologies used, and applied theoretical models and theories. Specifically, this dissertation utilizes a combination of traditional statistical approaches (i.e., linear regression models), non-linear statistical approaches (i.e., growth modeling), and non-linear dynamical theory (NDST) approaches (aRQA) with process trace data to contribute to the field\u27s current understanding of the dynamics and complexities of SRL. Furthermore, this dissertation examines how limited agency can act as an implicit scaffold during game-based learning to promote the use of SRL processes and increase learning outcomes
    • …
    corecore