1,001 research outputs found

    INTERACTIVE PHYSICAL DESIGN AND HAPTIC PLAYING OF VIRTUAL MUSICAL INSTRUMENTS

    No full text
    International audienceIn Computer Music, a practical approach of many Digital Musical Instruments is to separate the gestural input stage from the sound synthesis stage. While these instruments offer many creative possibilities, they present a strong rupture with traditional acoustic instruments, as the physical coupling between human and sound is broken. This coupling plays a crucial role for the expressive musical playing of acoustic instruments; we believe restoring it in a digital context is of equal importance for revealing the full expressive potential of digital instruments. This paper first presents haptic and physical modelling technologies for representing the mechano-acoustical instrumental situation in the context of DMIs. From these technologies, a prototype environment has been implemented for both designing virtual musical instruments and interacting with them via a force feedback device, able to preserve the energetic coherency of the musician-sound chain

    Experimental Approaches to the Composition of Interactive Video Game Music

    Get PDF
    This project explores experimental approaches and strategies to the composition of interactive music for the medium of video games. Whilst music in video games has not enjoyed the technological progress that other aspects of the software have received, budgets expand and incomes from releases grow. Music is now arguably less interactive than it was in the 1990’s, and whilst graphics occupy large amounts of resources and development time, audio does not garner the same attention. This portfolio develops strategies and audio engines, creating music using the techniques of aleatoric composition, real-time remixing of existing work, and generative synthesisers. The project created music for three ‘open-form’ games : an example of the racing genre (Kart Racing Pro); an arena-based first-person shooter (Counter-Strike : Source); and a real-time strategy title (0 A.D.). These games represent a cross-section of ‘sandbox’- type games on the market, as well as all being examples of games with open-ended or open-source code

    Real-time sound synthesis on a multi-processor platform

    Get PDF
    Real-time sound synthesis means that the calculation and output of each sound sample for a channel of audio information must be completed within a sample period. At a broadcasting standard, a sampling rate of 32,000 Hz, the maximum period available is 31.25 μsec. Such requirements demand a large amount of data processing power. An effective solution for this problem is a multi-processor platform; a parallel and distributed processing system. The suitability of the MIDI [Music Instrument Digital Interface] standard, published in 1983, as a controller for real-time applications is examined. Many musicians have expressed doubts on the decade old standard's ability for real-time performance. These have been investigated by measuring timing in various musical gestures, and by comparing these with the subjective characteristics of human perception. An implementation and its optimisation of real-time additive synthesis programs on a multi-transputer network are described. A prototype 81-polyphonic-note- organ configuration was implemented. By devising and deploying monitoring processes, the network's performance was measured and enhanced, leading to an efficient usage; the 88-note configuration. Since 88 simultaneous notes are rarely necessary in most performances, a scheduling program for dynamic note allocation was then introduced to achieve further efficiency gains. Considering calculation redundancies still further, a multi-sampling rate approach was applied as a further step to achieve an optimal performance. The theories underlining sound granulation, as a means of constructing complex sounds from grains, and the real-time implementation of this technique are outlined. The idea of sound granulation is quite similar to the quantum-wave theory, "acoustic quanta". Despite the conceptual simplicity, the signal processing requirements set tough demands, providing a challenge for this audio synthesis engine. Three issues arising from the results of the implementations above are discussed; the efficiency of the applications implemented, provisions for new processors and an optimal network architecture for sound synthesis

    A digital waveguide-based approach for Clavinet modeling and synthesis

    Get PDF
    The Clavinet is an electromechanical musical instrument produced in the mid-twentieth century. As is the case for other vintage instruments, it is subject to aging and requires great effort to be maintained or restored. This paper reports analyses conducted on a Hohner Clavinet D6 and proposes a computational model to faithfully reproduce the Clavinet sound in real time, from tone generation to the emulation of the electronic components. The string excitation signal model is physically inspired and represents a cheap solution in terms of both computational resources and especially memory requirements (compared, e.g., to sample playback systems). Pickups and amplifier models have been implemented which enhance the natural character of the sound with respect to previous work. A model has been implemented on a real-time software platform, Pure Data, capable of a 10-voice polyphony with low latency on an embedded device. Finally, subjective listening tests conducted using the current model are compared to previous tests showing slightly improved results

    ARTIFICIAL INTELLIGENCE-BASED APPROACH TO MODELLING OF PIPE ORGANS

    Get PDF
    The aim of the project was to develop a new Artificial Intelligence-based method to aid modeling of musical instruments and sound design. Despite significant advances in music technology, sound design and synthesis of complex musical instruments is still time consuming, error prone and requires expert understanding of the instrument attributes and significant expertise to produce high quality synthesised sounds to meet the needs of musicians and musical instrument builders. Artificial Intelligence (Al) offers an effective means of capturing this expertise and for handling the imprecision and uncertainty inherent in audio knowledge and data. This thesis presents new techniques to capture and exploit audio expertise, following extended knowledge elicitation with two renowned music technologist/audio experts, developed and embodied into an intelligent audio system. The Al combined with perceptual auditory modeling ba.sed techniques (ITU-R BS 1387) make a generic modeling framework providing a robust methodology for sound synthesis parameters optimisation with objective prediction of sound synthesis quality. The evaluation, carried out using typical pipe organ sounds, has shown that the intelligent audio system can automatically design sounds judged by the experts to be of very good quality, while significantly reducing the expert's work-load by up to a factor of three and need for extensive subjective tests. This research work, the first initiative to capture explicitly knowledge from audio experts for sound design, represents an important contribution for future design of electronic musical instruments based on perceptual sound quality will help to develop a new sound quality index for benchmarking sound synthesis techniques and serve as a research framework for modeling of a wide range of musical instruments.Musicom Lt

    Sparse Nonstationary Gabor Expansions - with Applications to Music Signals

    Get PDF

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments
    corecore