1,713 research outputs found

    Tuning for yield : towards predictable deep-submicron manufacturing

    Get PDF

    Efficient Aging-aware Failure Probability Estimation Using Augmented Reliability and Subset Simulation

    Get PDF
    A circuit-aging simulation that efficiently calculates temporal change of rare circuit-failure probability is proposed. While conventional methods required a long computational time due to the necessity of conducting separate calculations of failure probability at each device age, the proposed Monte Carlo based method requires to run only a single set of simulation. By applying the augmented reliability and subset simulation framework, the change of failure probability along the lifetime of the device can be evaluated through the analysis of the Monte Carlo samples. Combined with the two-step sample generation technique, the proposed method reduces the computational time to about 1/6 of that of the conventional method while maintaining a sufficient estimation accuracy

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    Worst-Case Analysis of Electrical and Electronic Equipment via Affine Arithmetic

    Get PDF
    In the design and fabrication process of electronic equipment, there are many unkown parameters which significantly affect the product performance. Some uncertainties are due to manufacturing process fluctuations, while others due to the environment such as operating temperature, voltage, and various ambient aging stressors. It is desirable to consider these uncertainties to ensure product performance, improve yield, and reduce design cost. Since direct electromagnetic compatibility measurements impact on both cost and time-to-market, there has been a growing demand for the availability of tools enabling the simulation of electrical and electronic equipment with the inclusion of the effects of system uncertainties. In this framework, the assessment of device response is no longer regarded as deterministic but as a random process. It is traditionally analyzed using the Monte Carlo or other sampling-based methods. The drawback of the above methods is large number of required samples to converge, which are time-consuming for practical applications. As an alternative, the inherent worst-case approaches such as interval analysis directly provide an estimation of the true bounds of the responses. However, such approaches might provide unnecessarily strict margins, which are very unlikely to occur. A recent technique, affine arithmetic, advances the interval based methods by means of handling correlated intervals. However, it still leads to over-conservatism due to the inability of considering probability information. The objective of this thesis is to improve the accuracy of the affine arithmetic and broaden its application in frequency-domain analysis. We first extend the existing literature results to the efficient time-domain analysis of lumped circuits considering the uncertainties. Then we provide an extension of the basic affine arithmetic to the frequency-domain simulation of circuits. Classical tools for circuit analysis are used within a modified affine framework accounting for complex algebra and uncertainty interval partitioning for the accurate and efficient computation of the worst case bounds of the responses of both lumped and distributed circuits. The performance of the proposed approach is investigated through extensive simulations in several case studies. The simulation results are compared with the Monte Carlo method in terms of both simulation time and accuracy

    Surrogate based Optimization and Verification of Analog and Mixed Signal Circuits

    Get PDF
    Nonlinear Analog and Mixed Signal (AMS) circuits are very complex and expensive to design and verify. Deeper technology scaling has made these designs susceptible to noise and process variations which presents a growing concern due to the degradation in the circuit performances and risks of design failures. In fact, due to process parameters, AMS circuits like phase locked loops may present chaotic behavior that can be confused with noisy behavior. To design and verify circuits, current industrial designs rely heavily on simulation based verification and knowledge based optimization techniques. However, such techniques lack mathematical rigor necessary to catch up with the growing design constraints besides being computationally intractable. Given all aforementioned barriers, new techniques are needed to ensure that circuits are robust and optimized despite process variations and possible chaotic behavior. In this thesis, we develop a methodology for optimization and verification of AMS circuits advancing three frontiers in the variability-aware design flow. The first frontier is a robust circuit sizing methodology wherein a multi-level circuit optimization approach is proposed. The optimization is conducted in two phases. First, a global sizing phase powered by a regional sensitivity analysis to quickly scout the feasible design space that reduces the optimization search. Second, nominal sizing step based on space mapping of two AMS circuits models at different levels of abstraction is developed for the sake of breaking the re-design loop without performance penalties. The second frontier concerns a dynamics verification scheme of the circuit behavior (i.e., study the chaotic vs. stochastic circuit behavior). It is based on a surrogate generation approach and a statistical proof by contradiction technique using Gaussian Kernel measure in the state space domain. The last frontier focus on quantitative verification approaches to predict parametric yield for both a single and multiple circuit performance constraints. The single performance approach is based on a combination of geometrical intertwined reachability analysis and a non-parametric statistical verification scheme. On the other hand, the multiple performances approach involves process parameter reduction, state space based pattern matching, and multiple hypothesis testing procedures. The performance of the proposed methodology is demonstrated on several benchmark analog and mixed signal circuits. The optimization approach greatly improves computational efficiency while locating a comparable/better design point than other approaches. Moreover, great improvements were achieved using our verification methods with many orders of speedup compared to existing techniques

    Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion

    Get PDF
    Energy Harvesting Devices (EHD) have been widely used to generate electrical power from the bio-kinetic energy of human body movement. A novel Piezoelectric Flex Transducer (PFT) based on the Cymbal device has been proposed by Daniels et al. (2013) for the purpose of energy harvesting. To further improve the efficiency of the device, optimal design of the PFT for maximum output power subject to stress and displacement constraints is carried out in this paper. Sequential Quadratic Programming (SQP) on metamodels generated with Genetic Programming from a 140-point optimal Latin hypercube design of experiments is used in the optimization. Finally, the optimal design is validated by finite element simulations. The simulations show that the magnitude of the electrical power generated from this optimal PFT harvesting device can be up to 6.5 mw when a safety design factor of 2.0 is applied

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi
    corecore