76 research outputs found

    An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver

    Full text link
    We propose an efficient algorithm for the immersed boundary method on distributed-memory architectures, with the computational complexity of a completely explicit method and excellent parallel scaling. The algorithm utilizes the pseudo-compressibility method recently proposed by Guermond and Minev [Comptes Rendus Mathematique, 348:581-585, 2010] that uses a directional splitting strategy to discretize the incompressible Navier-Stokes equations, thereby reducing the linear systems to a series of one-dimensional tridiagonal systems. We perform numerical simulations of several fluid-structure interaction problems in two and three dimensions and study the accuracy and convergence rates of the proposed algorithm. For these problems, we compare the proposed algorithm against other second-order projection-based fluid solvers. Lastly, the strong and weak scaling properties of the proposed algorithm are investigated

    Multiscale Methods for Random Composite Materials

    Get PDF
    Simulation of material behaviour is not only a vital tool in accelerating product development and increasing design efficiency but also in advancing our fundamental understanding of materials. While homogeneous, isotropic materials are often simple to simulate, advanced, anisotropic materials pose a more sizeable challenge. In simulating entire composite components such as a 25m aircraft wing made by stacking several 0.25mm thick plies, finite element models typically exceed millions or even a billion unknowns. This problem is exacerbated by the inclusion of sub-millimeter manufacturing defects for two reasons. Firstly, a finer resolution is required which makes the problem larger. Secondly, defects introduce randomness. Traditionally, this randomness or uncertainty has been quantified heuristically since commercial codes are largely unsuccessful in solving problems of this size. This thesis develops a rigorous uncertainty quantification (UQ) framework permitted by a state of the art finite element package \texttt{dune-composites}, also developed here, designed for but not limited to composite applications. A key feature of this open-source package is a robust, parallel and scalable preconditioner \texttt{GenEO}, that guarantees constant iteration counts independent of problem size. It boasts near perfect scaling properties in both, a strong and a weak sense on over 15,00015,000 cores. It is numerically verified by solving industrially motivated problems containing upwards of 200 million unknowns. Equipped with the capability of solving expensive models, a novel stochastic framework is developed to quantify variability in part performance arising from localized out-of-plane defects. Theoretical part strength is determined for independent samples drawn from a distribution inferred from B-scans of wrinkles. Supported by literature, the results indicate a strong dependence between maximum misalignment angle and strength knockdown based on which an engineering model is presented to allow rapid estimation of residual strength bypassing expensive simulations. The engineering model itself is built from a large set of simulations of residual strength, each of which is computed using the following two step approach. First, a novel parametric representation of wrinkles is developed where the spread of parameters defines the wrinkle distribution. Second, expensive forward models are only solved for independent wrinkles using \texttt{dune-composites}. Besides scalability the other key feature of \texttt{dune-composites}, the \texttt{GenEO} coarse space, doubles as an excellent multiscale basis which is exploited to build high quality reduced order models that are orders of magnitude smaller. This is important because it enables multiple coarse solves for the cost of one fine solve. In an MCMC framework, where many solves are wasted in arriving at the next independent sample, this is a sought after quality because it greatly increases effective sample size for a fixed computational budget thus providing a route to high-fidelity UQ. This thesis exploits both, new solvers and multiscale methods developed here to design an efficient Bayesian framework to carry out previously intractable (large scale) simulations calibrated by experimental data. These new capabilities provide the basis for future work on modelling random heterogeneous materials while also offering the scope for building virtual test programs including nonlinear analyses, all of which can be implemented within a probabilistic setting

    Composite Finite Elements for Trabecular Bone Microstructures

    Get PDF
    In many medical and technical applications, numerical simulations need to be performed for objects with interfaces of geometrically complex shape. We focus on the biomechanical problem of elasticity simulations for trabecular bone microstructures. The goal of this dissertation is to develop and implement an efficient simulation tool for finite element simulations on such structures, so-called composite finite elements. We will deal with both the case of material/void interfaces (complicated domains) and the case of interfaces between different materials (discontinuous coefficients). In classical finite element simulations, geometric complexity is encoded in tetrahedral and typically unstructured meshes. Composite finite elements, in contrast, encode geometric complexity in specialized basis functions on a uniform mesh of hexahedral structure. Other than alternative approaches (such as e.g. fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes, and extended finite element methods), the composite finite elements are tailored to geometry descriptions by 3D voxel image data and use the corresponding voxel grid as computational mesh, without introducing additional degrees of freedom, and thus making use of efficient data structures for uniformly structured meshes. The composite finite element method for complicated domains goes back to Wolfgang Hackbusch and Stefan Sauter and restricts standard affine finite element basis functions on the uniformly structured tetrahedral grid (obtained by subdivision of each cube in six tetrahedra) to an approximation of the interior. This can be implemented as a composition of standard finite element basis functions on a local auxiliary and purely virtual grid by which we approximate the interface. In case of discontinuous coefficients, the same local auxiliary composition approach is used. Composition weights are obtained by solving local interpolation problems for which coupling conditions across the interface need to be determined. These depend both on the local interface geometry and on the (scalar or tensor-valued) material coefficients on both sides of the interface. We consider heat diffusion as a scalar model problem and linear elasticity as a vector-valued model problem to develop and implement the composite finite elements. Uniform cubic meshes contain a natural hierarchy of coarsened grids, which allows us to implement a multigrid solver for the case of complicated domains. Besides simulations of single loading cases, we also apply the composite finite element method to the problem of determining effective material properties, e.g. for multiscale simulations. For periodic microstructures, this is achieved by solving corrector problems on the fundamental cells using affine-periodic boundary conditions corresponding to uniaxial compression and shearing. For statistically periodic trabecular structures, representative fundamental cells can be identified but do not permit the periodic approach. Instead, macroscopic displacements are imposed using the same set as before of affine-periodic Dirichlet boundary conditions on all faces. The stress response of the material is subsequently computed only on an interior subdomain to prevent artificial stiffening near the boundary. We finally check for orthotropy of the macroscopic elasticity tensor and identify its axes.Zusammengesetzte finite Elemente für trabekuläre Mikrostrukturen in Knochen In vielen medizinischen und technischen Anwendungen werden numerische Simulationen für Objekte mit geometrisch komplizierter Form durchgeführt. Gegenstand dieser Dissertation ist die Simulation der Elastizität trabekulärer Mikrostrukturen von Knochen, einem biomechanischen Problem. Ziel ist es, ein effizientes Simulationswerkzeug für solche Strukturen zu entwickeln, die sogenannten zusammengesetzten finiten Elemente. Wir betrachten dabei sowohl den Fall von Interfaces zwischen Material und Hohlraum (komplizierte Gebiete) als auch zwischen verschiedenen Materialien (unstetige Koeffizienten). In klassischen Finite-Element-Simulationen wird geometrische Komplexität typischerweise in unstrukturierten Tetraeder-Gittern kodiert. Zusammengesetzte finite Elemente dagegen kodieren geometrische Komplexität in speziellen Basisfunktionen auf einem gleichförmigen Würfelgitter. Anders als alternative Ansätze (wie zum Beispiel fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes und extended finite element methods) sind die zusammengesetzten finiten Elemente zugeschnitten auf die Geometriebeschreibung durch dreidimensionale Bilddaten und benutzen das zugehörige Voxelgitter als Rechengitter, ohne zusätzliche Freiheitsgrade einzuführen. Somit können sie effiziente Datenstrukturen für gleichförmig strukturierte Gitter ausnutzen. Die Methode der zusammengesetzten finiten Elemente geht zurück auf Wolfgang Hackbusch und Stefan Sauter. Man schränkt dabei übliche affine Finite-Element-Basisfunktionen auf gleichförmig strukturierten Tetraedergittern (die man durch Unterteilung jedes Würfels in sechs Tetraeder erhält) auf das approximierte Innere ein. Dies kann implementiert werden durch das Zusammensetzen von Standard-Basisfunktionen auf einem lokalen und rein virtuellen Hilfsgitter, durch das das Interface approximiert wird. Im Falle unstetiger Koeffizienten wird die gleiche lokale Hilfskonstruktion verwendet. Gewichte für das Zusammensetzen erhält man hier, indem lokale Interpolationsprobleme gelöst werden, wozu zunächst Kopplungsbedingungen über das Interface hinweg bestimmt werden. Diese hängen ab sowohl von der lokalen Geometrie des Interface als auch von den (skalaren oder tensorwertigen) Material-Koeffizienten auf beiden Seiten des Interface. Wir betrachten Wärmeleitung als skalares und lineare Elastizität als vektorwertiges Modellproblem, um die zusammengesetzten finiten Elemente zu entwickeln und zu implementieren. Gleichförmige Würfelgitter enthalten eine natürliche Hierarchie vergröberter Gitter, was es uns erlaubt, im Falle komplizierter Gebiete einen Mehrgitterlöser zu implementieren. Neben Simulationen einzelner Lastfälle wenden wir die zusammengesetzten finiten Elemente auch auf das Problem an, effektive Materialeigenschaften zu bestimmen, etwa für mehrskalige Simulationen. Für periodische Mikrostrukturen wird dies erreicht, indem man Korrekturprobleme auf der Fundamentalzelle löst. Dafür nutzt man affin-periodische Randwerte, die zu uniaxialem Druck oder zu Scherung korrespondieren. In statistisch periodischen trabekulären Mikrostrukturen lassen sich ebenfalls Fundamentalzellen identifizieren, sie erlauben jedoch keinen periodischen Ansatz. Stattdessen werden makroskopische Verschiebungen zu denselben affin-periodischen Randbedingungen vorgegeben, allerdings durch Dirichlet-Randwerte auf allen Seitenflächen. Die Spannungsantwort des Materials wird anschließend nur auf einem inneren Teilbereich berechnet, um künstliche Versteifung am Rand zu verhindern. Schließlich prüfen wir den makroskopischen Elastizitätstensor auf Orthotropie und identifizieren deren Achsen

    Particle-based Variational Inference with Preconditioned Functional Gradient Flow

    Full text link
    Particle-based variational inference (VI) minimizes the KL divergence between model samples and the target posterior with gradient flow estimates. With the popularity of Stein variational gradient descent (SVGD), the focus of particle-based VI algorithms has been on the properties of functions in Reproducing Kernel Hilbert Space (RKHS) to approximate the gradient flow. However, the requirement of RKHS restricts the function class and algorithmic flexibility. This paper remedies the problem by proposing a general framework to obtain tractable functional gradient flow estimates. The functional gradient flow in our framework can be defined by a general functional regularization term that includes the RKHS norm as a special case. We use our framework to propose a new particle-based VI algorithm: preconditioned functional gradient flow (PFG). Compared with SVGD, the proposed method has several advantages: larger function class; greater scalability in large particle-size scenarios; better adaptation to ill-conditioned distributions; provable continuous-time convergence in KL divergence. Non-linear function classes such as neural networks can be incorporated to estimate the gradient flow. Both theory and experiments have shown the effectiveness of our framework.Comment: 34 pages, 8 figure

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Cfd Analysis And Design Optimization Of Flapping Wing Flows

    Get PDF
    The main objectives of this research work are to perform the CFD analysis of the 3-D flow around a flapping wing in a gusty environment and to optimize its kinematics and shape to maximize the performance. The effects of frontal, side, and downward wind gusts on the aerodynamic characteristics of a rigid wing undergoing insect-based flapping motion are analyzed numerically. The turbulent, low-Reynolds-number flow near a flapping wing is governed by the 3-D unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the Spalart-Allmaras turbulence model. The governing equations are solved using a second-order node-centered finite volume method on a hexahedral mesh that rigidly moves along with the wing. Our numerical results show that a centimeter-scale wing considered is susceptible to strong downward wind gusts. In the case of frontal and side gusts, the flapping wing can alleviate the gust effect if the gust velocity is less than or comparable to the wing tip velocity. The second objective is to optimize the wing kinematics and shape to improve its aerodynamic characteristics. To our knowledge, this is the first attempt to perform high-fidelity combined optimization of flapping wing kinematics and shape in 3-D unsteady turbulent flows. For our optimization studies, an adjoint-based gradient method using the method of Lagrange multipliers is employed to minimize an objective functional with the 3D URANS and grid equations as constraints. It has been shown that some unsteady phenomena such as the clap and fling mechanism found in use by flying insects (e.g., a wasp Encarsaria formosa, or greenhouse white-fly Trialeurodes vaporariorium), maximize the wing propulsive efficiency. These results indicate that the time-dependent adjoint-based optimization method is an efficient tool for design of a new generation of micro air vehicles

    The Sixth Copper Mountain Conference on Multigrid Methods, part 1

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth
    • …
    corecore