345 research outputs found

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Efficient multiscale regularization with applications to the computation of optical flow

    Get PDF
    Includes bibliographical references (p. 28-31).Supported by the Air Force Office of Scientific Research. AFOSR-92-J-0002 Supported by the Draper Laboratory IR&D Program. DL-H-418524 Supported by the Office of Naval Research. N00014-91-J-1004 Supported by the Army Research Office. DAAL03-92-G-0115Mark R. Luettgen, W. Clem Karl, Alan S. Willsky

    Optical flow computation via multiscale regularization

    Get PDF
    "EDICS category 1.11."Includes bibliographical references (p. 38-40).Supported by the Air Force Office of Scientific Research. AFOSR-88-0032 Supported by the Draper Laboratory IR&D Program. DL-H-418524 Supported by the Office of Naval Research. N00014-91-J-1004 Supported by the Army Research Office. DAAL03-36-K-0171Mark R. Luettgen, W. Clem Karl, Alan S. Willsky

    A distributed and iterative method for square root filtering in space-time estimation

    Get PDF
    Caption title.Includes bibliographical references.Supported by the Air Force Office of Scientific Research. F49620-92-J-002 Supported by the Office of Naval Research. N00014-91-J-1120 N00014-91-J-1004 Supported by the Army Research Office. DAAL03-92-G-0115Toshio M. Chin, William C. Karl, Alan S. Willsky

    A discrete graph Laplacian for signal processing

    Get PDF
    In this thesis we exploit diffusion processes on graphs to effect two fundamental problems of image processing: denoising and segmentation. We treat these two low-level vision problems on the pixel-wise level under a unified framework: a graph embedding. Using this framework opens us up to the possibilities of exploiting recently introduced algorithms from the semi-supervised machine learning literature. We contribute two novel edge-preserving smoothing algorithms to the literature. Furthermore we apply these edge-preserving smoothing algorithms to some computational photography tasks. Many recent computational photography tasks require the decomposition of an image into a smooth base layer containing large scale intensity variations and a residual layer capturing fine details. Edge-preserving smoothing is the main computational mechanism in producing these multi-scale image representations. We, in effect, introduce a new approach to edge-preserving multi-scale image decompositions. Where as prior approaches such as the Bilateral filter and weighted-least squares methods require multiple parameters to tune the response of the filters our method only requires one. This parameter can be interpreted as a scale parameter. We demonstrate the utility of our approach by applying the method to computational photography tasks that utilise multi-scale image decompositions. With minimal modification to these edge-preserving smoothing algorithms we show that we can extend them to produce interactive image segmentation. As a result the operations of segmentation and denoising are conducted under a unified framework. Moreover we discuss how our method is related to region based active contours. We benchmark our proposed interactive segmentation algorithms against those based upon energy-minimisation, specifically graph-cut methods. We demonstrate that we achieve competitive performance

    Semiannual report

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1994 - 31 Mar. 1995

    A Multiresolution Markovian Fusion Model for the Color Visualization of Hyperspectral Images

    Full text link

    Analysis, estimation and control for perturbed and singular systems for systems subject to discrete events.

    Get PDF
    "The principle investigator for this effort is Professor Alan S. Willsky, and Professor George C. Verghese is co-principal investigator."--P. [3].Includes bibliographical references (p. [20]-[25]).Final technical report for grant AFOSR-88-0032.Supported by the AFOSR. AFOSR-88-003
    corecore