1,260 research outputs found

    Radio resource allocation for multicarrier-low density spreading multiple access

    Get PDF
    Multicarrier-low density spreading multiple access (MC-LDSMA) is a promising multiple access technique that enables near optimum multiuser detection. In MC-LDSMA, each user’s symbol spread on a small set of subcarriers, and each subcarrier is shared by multiple users. The unique structure of MC-LDSMA makes the radio resource allocation more challenging comparing to some well-known multiple access techniques. In this paper, we study the radio resource allocation for single-cell MC-LDSMA system. Firstly, we consider the single-user case, and derive the optimal power allocation and subcarriers partitioning schemes. Then, by capitalizing on the optimal power allocation of the Gaussian multiple access channel, we provide an optimal solution for MC-LDSMA that maximizes the users’ weighted sum-rate under relaxed constraints. Due to the prohibitive complexity of the optimal solution, suboptimal algorithms are proposed based on the guidelines inferred by the optimal solution. The performance of the proposed algorithms and the effect of subcarrier loading and spreading are evaluated through Monte Carlo simulations. Numerical results show that the proposed algorithms significantly outperform conventional static resource allocation, and MC-LDSMA can improve the system performance in terms of spectral efficiency and fairness in comparison with OFDMA

    Radio resource allocation for uplink OFDMA systems with finite symbol alphabet inputs

    Get PDF
    In this paper, we consider the radio resource allocation problem for uplink orthogonal frequency-division multiple-access (OFDMA) systems. The existing algorithms have been derived under the assumption of Gaussian inputs due to its closed-form expression of mutual information. For the sake of practicality, we consider the system with finite symbol alphabet (FSA) inputs and solve the problem by capitalizing on the recently revealed relationship between mutual information and minimum mean square error (MMSE). We first relax the problem to formulate it as a convex optimization problem, and then, we derive the optimal solution via decomposition methods. The optimal solution serves as an upper bound on the system performance. Due to the complexity of the optimal solution, a low-complexity suboptimal algorithm is proposed. Numerical results show that the presented suboptimal algorithm can achieve performance very close to the optimal solution and that it outperforms the existing suboptimal algorithms. Furthermore, using our proposed algorithm, significant power saving can be achieved in comparison to the case when a Gaussian input is assumed
    • …
    corecore