1,345 research outputs found

    Planar Object Tracking in the Wild: A Benchmark

    Full text link
    Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.Comment: Accepted by ICRA 201

    Online Structured Learning for Real-Time Computer Vision Gaming Applications

    Get PDF
    In recent years computer vision has played an increasingly important role in the development of computer games, and it now features as one of the core technologies for many gaming platforms. The work in this thesis addresses three problems in real-time computer vision, all of which are motivated by their potential application to computer games. We rst present an approach for real-time 2D tracking of arbitrary objects. In common with recent research in this area we incorporate online learning to provide an appearance model which is able to adapt to the target object and its surrounding background during tracking. However, our approach moves beyond the standard framework of tracking using binary classication and instead integrates tracking and learning in a more principled way through the use of structured learning. As well as providing a more powerful framework for adaptive visual object tracking, our approach also outperforms state-of-the-art tracking algorithms on standard datasets. Next we consider the task of keypoint-based object tracking. We take the traditional pipeline of matching keypoints followed by geometric verication and show how this can be embedded into a structured learning framework in order to provide principled adaptivity to a given environment. We also propose an approximation method allowing us to take advantage of recently developed binary image descriptors, meaning our approach is suitable for real-time application even on low-powered portable devices. Experimentally, we clearly see the benet that online adaptation using structured learning can bring to this problem. Finally, we present an approach for approximately recovering the dense 3D structure of a scene which has been mapped by a simultaneous localisation and mapping system. Our approach is guided by the constraints of the low-powered portable hardware we are targeting, and we develop a system which coarsely models the scene using a small number of planes. To achieve this, we frame the task as a structured prediction problem and introduce online learning into our approach to provide adaptivity to a given scene. This allows us to use relatively simple multi-view information coupled with online learning of appearance to efficiently produce coarse reconstructions of a scene

    V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map

    Full text link
    Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D depth map. While the depth map is intrinsically 3D data, many previous methods treat depth maps as 2D images that can distort the shape of the actual object through projection from 3D to 2D space. This compels the network to perform perspective distortion-invariant estimation. The second weakness of the conventional approach is that directly regressing 3D coordinates from a 2D image is a highly non-linear mapping, which causes difficulty in the learning procedure. To overcome these weaknesses, we firstly cast the 3D hand and human pose estimation problem from a single depth map into a voxel-to-voxel prediction that uses a 3D voxelized grid and estimates the per-voxel likelihood for each keypoint. We design our model as a 3D CNN that provides accurate estimates while running in real-time. Our system outperforms previous methods in almost all publicly available 3D hand and human pose estimation datasets and placed first in the HANDS 2017 frame-based 3D hand pose estimation challenge. The code is available in https://github.com/mks0601/V2V-PoseNet_RELEASE.Comment: HANDS 2017 Challenge Frame-based 3D Hand Pose Estimation Winner (ICCV 2017), Published at CVPR 201
    • …
    corecore