592 research outputs found

    A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM

    Get PDF
    Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain properties in the random oracle model (ROM). In terms of computation, our protocol only requires the generation of a public/secret-key pair, two encryption operations and one decryption operation, apart from a few calls to the random oracle. In~terms of communication, our protocol only requires the transfer of one public-key, two ciphertexts, and three binary strings of roughly the same size as the message. Next, we show how to instantiate our construction under the low noise LPN, McEliece, QC-MDPC, LWE, and CDH assumptions. Our instantiations based on the low noise LPN, McEliece, and QC-MDPC assumptions are the first UC-secure OT protocols based on coding assumptions to achieve: 1) adaptive security, 2) optimal round complexity, 3) low communication and computational complexities. Previous results in this setting only achieved static security and used costly cut-and-choose techniques.Our instantiation based on CDH achieves adaptive security at the small cost of communicating only two more group elements as compared to the gap-DH based Simplest OT protocol of Chou and Orlandi (Latincrypt 15), which only achieves static security in the ROM

    Adaptive Oblivious Transfer and Generalization

    Get PDF
    International audienceOblivious Transfer (OT) protocols were introduced in the seminal paper of Rabin, and allow a user to retrieve a given number of lines (usually one) in a database, without revealing which ones to the server. The server is ensured that only this given number of lines can be accessed per interaction, and so the others are protected; while the user is ensured that the server does not learn the numbers of the lines required. This primitive has a huge interest in practice, for example in secure multi-party computation, and directly echoes to Symmetrically Private Information Retrieval (SPIR). Recent Oblivious Transfer instantiations secure in the UC framework suf- fer from a drastic fallback. After the first query, there is no improvement on the global scheme complexity and so subsequent queries each have a global complexity of O(|DB|) meaning that there is no gain compared to running completely independent queries. In this paper, we propose a new protocol solving this issue, and allowing to have subsequent queries with a complexity of O(log(|DB|)), and prove the protocol security in the UC framework with adaptive corruptions and reliable erasures. As a second contribution, we show that the techniques we use for Obliv- ious Transfer can be generalized to a new framework we call Oblivi- ous Language-Based Envelope (OLBE). It is of practical interest since it seems more and more unrealistic to consider a database with uncontrolled access in access control scenarii. Our approach generalizes Oblivious Signature-Based Envelope, to handle more expressive credentials and requests from the user. Naturally, OLBE encompasses both OT and OSBE, but it also allows to achieve Oblivious Transfer with fine grain access over each line. For example, a user can access a line if and only if he possesses a certificate granting him access to such line. We show how to generically and efficiently instantiate such primitive, and prove them secure in the Universal Composability framework, with adaptive corruptions assuming reliable erasures. We provide the new UC ideal functionalities when needed, or we show that the existing ones fit in our new framework. The security of such designs allows to preserve both the secrecy of the database values and the user credentials. This symmetry allows to view our new approach as a generalization of the notion of Symmetrically PIR

    Structure-Preserving Smooth Projective Hashing

    Get PDF
    International audienceSmooth projective hashing has proven to be an extremely useful primitive, in particular when used in conjunction with commitments to provide implicit decommitment. This has lead to applications proven secure in the UC framework, even in presence of an adversary which can do adaptive corruptions, like for example Password Authenticated Key Exchange (PAKE), and 1-out-of-m Oblivious Transfer (OT). However such solutions still lack in efficiency, since they heavily scale on the underlying message length. Structure-preserving cryptography aims at providing elegant and efficient schemes based on classical assumptions and standard group operations on group elements. Recent trend focuses on constructions of structure- preserving signatures, which require message, signature and verification keys to lie in the base group, while the verification equations only consist of pairing-product equations. Classical constructions of Smooth Projective Hash Function suffer from the same limitation as classical signatures: at least one part of the computation (messages for signature, witnesses for SPHF) is a scalar. In this work, we introduce and instantiate the concept of Structure- Preserving Smooth Projective Hash Function, and give as applications more efficient instantiations for one-round PAKE and three-round OT, and information retrieval thanks to Anonymous Credentials, all UC- secure against adaptive adversaries

    Generic Construction of UC-Secure Oblivious Transfer

    No full text
    International audienceWe show how to construct a completely generic UC-secure oblivious transfer scheme from a collision-resistant chameleon hash scheme (CH) and a CCA encryption scheme accepting a smooth projective hash function (SPHF). Our work is based on the work of Abdalla et al. at Asiacrypt 2013, where the authors formalize the notion of SPHF-friendly commitments, i.e. accepting an SPHF on the language of valid commitments (to allow implicit decommitment), and show how to construct from them a UC-secure oblivious transfer in a generic way. But Abdalla et al. only gave a DDH-based construction of SPHF-friendly commitment schemes, furthermore highly relying on pairings. In this work, we show how to generically construct an SPHF-friendly commitment scheme from a collision-resistant CH scheme and an SPHF-friendly CCA encryption scheme. This allows us to propose an instanciation of our schemes based on the DDH, as efficient as that of Abdalla et al., but without requiring any pairing. Interestingly, our generic framework also allows us to propose an instantiation based on the learning with errors (LWE) assumption. For the record, we finally propose a last instanciation based on the decisional composite residuosity (DCR) assumption

    Towards Applying Cryptographic Security Models to Real-World Systems

    Get PDF
    The cryptographic methodology of formal security analysis usually works in three steps: choosing a security model, describing a system and its intended security properties, and creating a formal proof of security. For basic cryptographic primitives and simple protocols this is a well understood process and is performed regularly. For more complex systems, as they are in use in real-world settings it is rarely applied, however. In practice, this often leads to missing or incomplete descriptions of the security properties and requirements of such systems, which in turn can lead to insecure implementations and consequent security breaches. One of the main reasons for the lack of application of formal models in practice is that they are particularly difficult to use and to adapt to new use cases. With this work, we therefore aim to investigate how cryptographic security models can be used to argue about the security of real-world systems. To this end, we perform case studies of three important types of real-world systems: data outsourcing, computer networks and electronic payment. First, we give a unified framework to express and analyze the security of data outsourcing schemes. Within this framework, we define three privacy objectives: \emph{data privacy}, \emph{query privacy}, and \emph{result privacy}. We show that data privacy and query privacy are independent concepts, while result privacy is consequential to them. We then extend our framework to allow the modeling of \emph{integrity} for the specific use case of file systems. To validate our model, we show that existing security notions can be expressed within our framework and we prove the security of CryFS---a cryptographic cloud file system. Second, we introduce a model, based on the Universal Composability (UC) framework, in which computer networks and their security properties can be described We extend it to incorporate time, which cannot be expressed in the basic UC framework, and give formal tools to facilitate its application. For validation, we use this model to argue about the security of architectures of multiple firewalls in the presence of an active adversary. We show that a parallel composition of firewalls exhibits strictly better security properties than other variants. Finally, we introduce a formal model for the security of electronic payment protocols within the UC framework. Using this model, we prove a set of necessary requirements for secure electronic payment. Based on these findings, we discuss the security of current payment protocols and find that most are insecure. We then give a simple payment protocol inspired by chipTAN and photoTAN and prove its security within our model. We conclude that cryptographic security models can indeed be used to describe the security of real-world systems. They are, however, difficult to apply and always need to be adapted to the specific use case

    Efficient and Universally Composable Protocols for Oblivious Transfer from the CDH Assumption

    Get PDF
    Oblivious Transfer (OT) is a simple, yet fundamental primitive which suffices to achieve almost every cryptographic application. In a recent work (Latincrypt `15), Chou and Orlandi (CO) present the most efficient, fully UC-secure OT protocol to date and argue its security under the CDH assumption. Unfortunately, a subsequent work by Genc et al. (Eprint `17) exposes a flaw in their proof which renders the CO protocol insecure. In this work, we make the following contributions: We first point out two additional, previously undiscovered flaws in the CO protocol and then show how to patch the proof with respect to static and malicious corruptions in the UC model under the stronger Gap Diffie-Hellman (GDH) assumption. With the proof failing for adaptive corruptions even under the GDH assumption, we then present a novel OT protocol which builds on ideas from the CO protocol and can be proven fully UC-secure under the CDH assumption. Interestingly, our new protocol is actually significantly more efficient (roughly by a factor of two) than the CO protocol. This improvement is made possible by avoiding costly redundancy in the symmetric encryption scheme used in the CO protocol. Our ideas can also be applied to the original CO protocol, which yields a similar gain in efficiency

    Fast and Universally-Composable Oblivious Transfer and Commitment Scheme with Adaptive Security

    Get PDF
    Adaptive security embodies one of the strongest notions of security that allows an adversary to corrupt parties at any point during protocol execution and gain access to its internal state. Since it models real-life situations such as ``hacking , efficient adaptively-secure multiparty computation (MPC) protocols are desirable. Such protocols demand primitives such as oblivious transfer (OT) and commitment schemes that are adaptively-secure as building blocks. Efficient realizations of these primitives have been found to be challenging, especially in the no erasure model. We make progress in this direction and provide efficient constructions that are Universally-Composable in the random oracle model. Oblivious Transfer: We present the first round optimal framework for building adaptively-secure OT in the programmable random oracle (PRO) model, relying upon the framework of Peikert et al. (Crypto 2008). When instantiated with Decisional Diffie Hellman assumption, it incurs a minimal communication overhead of one k bit string and computational overhead of 5 random oracle queries over its static counterpart, where k is the security parameter. This computation overhead translates to 0.02% and 1% in the LAN and WAN setting. Additionally, we obtain a construction of adaptively-secure 1-out-of-N OT by extending the result of Naor et al. (Journal of Cryptology 2005) that transforms logN copies of 1-out-of-2 OTs to one 1-out-of-N OT in the PRO model. We complete the picture of efficient OT constructions by presenting the first adaptively secure OT Extension, extending the protocol of Asharov et al. (Eurocrypt 2015) for the adaptive setting using PRO. Our OT extension enables us to obtain adaptive OTs at an amortized cost of 3 symmetric key operations and communication of 3k bit strings. It incurs a runtime overhead of 2% and 11.95%, in the LAN and WAN setting and almost no communication overhead over the static OT extension protocol. In concrete terms, the cost is 2microsecs and 115 microsecs for each OT in LAN and WAN. Commitment Scheme: We present an adaptively secure commitment scheme in the Global Random Oracle model solely relying on observable random oracle (ORO). Our commitment scheme has a one-time offline setup phase, where a common reference string (crs) is generated between the parties using an ORO. In the online phase, the parties use the crs and ORO to generate commitments in a non-interactive fashion. Our construction incurs communication of 4k bit strings and computation of 4 exponentiations and 4 random oracle queries for committing to an arbitrary length message. Empirically, it takes around 0.18ms and 0.2 ms for committing to 128 bits and 2048 bits respectively. It finds applications in secure two-party computation (2PC) protocols that adopt offline-online paradigm, where the crs can be generated in the offline phase and the scheme can be used in the online phase
    • …
    corecore