79,834 research outputs found

    Fuzzy Rule Based Enhancement in the SMRT Domain for Low Contrast Images

    Get PDF
    AbstractFuzzy techniques offer a new and flexible framework for the development of image enhancement algorithms. They are nonlinear, knowledge-based and robust. The potentials of fuzzy set theory for image enhancement are still not investigated in comparison with other established methodologies. In this paper, an examination of fuzzy methods in transform domain is considered. Fuzzy rule based contrast enhancement in the Sequency based Mapped RealTransform (SMRT) domain for block level processing is explored. SMRT, being an integer transform,is computationally efficient and the fuzzy rule based technique is applied to the entire blocks in the transform domain

    WAVELET BASED NONLINEAR SEPARATION OF IMAGES

    Get PDF
    This work addresses a real-life problem corresponding to the separation of the nonlinear mixture of images which arises when we scan a paper document and the image from the back page shows through. The proposed solution consists of a non-iterative procedure that is based on two simple observations: (1) the high frequency content of images is sparse, and (2) the image printed on each side of the paper appears more strongly in the mixture acquired from that side than in the mixture acquired from the opposite side. These ideas had already been used in the context of nonlinear denoising source separation (DSS). However, in that method the degree of separation achieved by applying these ideas was relatively weak, and the separation had to be improved by iterating within the DSS scheme. In this paper the application of these ideas is improved by changing the competition function and the wavelet transform that is used. These improvements allow us to achieve a good separation in one shot, without the need to integrate the process into an iterative DSS scheme. The resulting separation process is both nonlinear and non-local. We present experimental results that show that the method achieves a good separation quality

    ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing

    Full text link
    With the aim of developing a fast yet accurate algorithm for compressive sensing (CS) reconstruction of natural images, we combine in this paper the merits of two existing categories of CS methods: the structure insights of traditional optimization-based methods and the speed of recent network-based ones. Specifically, we propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general β„“1\ell_1 norm CS reconstruction model. To cast ISTA into deep network form, we develop an effective strategy to solve the proximal mapping associated with the sparsity-inducing regularizer using nonlinear transforms. All the parameters in ISTA-Net (\eg nonlinear transforms, shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than being hand-crafted. Moreover, considering that the residuals of natural images are more compressible, an enhanced version of ISTA-Net in the residual domain, dubbed {ISTA-Net}+^+, is derived to further improve CS reconstruction. Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform existing state-of-the-art optimization-based and network-based CS methods by large margins, while maintaining fast computational speed. Our source codes are available: \textsl{http://jianzhang.tech/projects/ISTA-Net}.Comment: 10 pages, 6 figures, 4 Tables. To appear in CVPR 201

    Accelerated graph-based spectral polynomial filters

    Full text link
    Graph-based spectral denoising is a low-pass filtering using the eigendecomposition of the graph Laplacian matrix of a noisy signal. Polynomial filtering avoids costly computation of the eigendecomposition by projections onto suitable Krylov subspaces. Polynomial filters can be based, e.g., on the bilateral and guided filters. We propose constructing accelerated polynomial filters by running flexible Krylov subspace based linear and eigenvalue solvers such as the Block Locally Optimal Preconditioned Conjugate Gradient (LOBPCG) method.Comment: 6 pages, 6 figures. Accepted to the 2015 IEEE International Workshop on Machine Learning for Signal Processin
    • …
    corecore