115 research outputs found

    Adopting Microsoft Excel for Biomedical Signal and Image Processing

    Get PDF
    Microsoft Excel was recently added to the list of software applications for signal and image processing. The use of Excel as a powerful tool for teaching signal and image data processing techniques as demonstrated in agriculture and natural resource management can be easily adopted for biomedical applications. In the same vein, Excel’s proven utility as a research tool can also be harnessed. This chapter expands the methodology of signal and image formation, visualization, enhancement, and image data fusion using Excel. Different types of techniques used in biomedical imaging are introduced, including: X-ray radiography (X-rays), computerized tomography (CT), ultrasound (U/S), magnetic resonance imaging (MRI), and optical imaging. However, the chapter mainly focuses on optical imaging involving a single spectrum or multiple spectra such as RGB. Specific illustrations of corresponding outputs from different techniques are discussed in the chapter for a better appreciation by the reader

    Image-Based Bidirectional Reflectance Distribution Function of Human Skin in the Visible and Near Infrared

    Get PDF
    Human detection is an important first step in locating and tracking people in many missions including SAR and ISR operations. Recent detection systems utilize hyperspectral and multispectral technology to increase the acquired spectral content in imagery and subsequently better identify targets. This research demonstrates human detection through a multispectral skin detection system to exploit the unique optical properties of human skin. At wavelengths in the VIS and NIR regions of the electromagnetic spectrum, an individual can be identified by their unique skin parameters. Current detection methods base the skin pixel selection criteria on a diffuse skin reflectance model; however, it can be observed that human skin exhibits a combination of specular and diffuse reflectance. The objective of this effort is to better characterize human skin reflectance by collecting image-based BRDF skin measurements for future model incorporation in the existing multispectral skin detection system. Integrating multispectral BRDF data should reduce misdetections and better describe skin reflectance as a function of illumination source, target, and detector orientation

    Multispectral Imaging For Face Recognition Over Varying Illumination

    Get PDF
    This dissertation addresses the advantage of using multispectral narrow-band images over conventional broad-band images for improved face recognition under varying illumination. To verify the effectiveness of multispectral images for improving face recognition performance, three sequential procedures are taken into action: multispectral face image acquisition, image fusion for multispectral and spectral band selection to remove information redundancy. Several efficient image fusion algorithms are proposed and conducted on spectral narrow-band face images in comparison to conventional images. Physics-based weighted fusion and illumination adjustment fusion make good use of spectral information in multispectral imaging process. The results demonstrate that fused narrow-band images outperform the conventional broad-band images under varying illuminations. In the case where multispectral images are acquired over severe changes in daylight, the fused images outperform conventional broad-band images by up to 78%. The success of fusing multispectral images lies in the fact that multispectral images can separate the illumination information from the reflectance of objects which is impossible for conventional broad-band images. To reduce the information redundancy among multispectral images and simplify the imaging system, distance-based band selection is proposed where a quantitative evaluation metric is defined to evaluate and differentiate the performance of multispectral narrow-band images. This method is proved to be exceptionally robust to parameter changes. Furthermore, complexity-guided distance-based band selection is proposed using model selection criterion for an automatic selection. The performance of selected bands outperforms the conventional images by up to 15%. From the significant performance improvement via distance-based band selection and complexity-guided distance-based band selection, we prove that specific facial information carried in certain narrow-band spectral images can enhance face recognition performance compared to broad-band images. In addition, both algorithms are proved to be independent to recognition engines. Significant performance improvement is achieved by proposed image fusion and band selection algorithms under varying illumination including outdoor daylight conditions. Our proposed imaging system and image processing algorithms lead to a new avenue of automatic face recognition system towards a better recognition performance than the conventional peer system over varying illuminations

    Illumination Processing in Face Recognition

    Get PDF

    Mirror mirror on the wall... an unobtrusive intelligent multisensory mirror for well-being status self-assessment and visualization

    Get PDF
    A person’s well-being status is reflected by their face through a combination of facial expressions and physical signs. The SEMEOTICONS project translates the semeiotic code of the human face into measurements and computational descriptors that are automatically extracted from images, videos and 3D scans of the face. SEMEOTICONS developed a multisensory platform in the form of a smart mirror to identify signs related to cardio-metabolic risk. The aim was to enable users to self-monitor their well-being status over time and guide them to improve their lifestyle. Significant scientific and technological challenges have been addressed to build the multisensory mirror, from touchless data acquisition, to real-time processing and integration of multimodal data

    Navigating the roadblocks to spectral color reproduction: data-efficient multi-channel imaging and spectral color management

    Get PDF
    Commercialization of spectral imaging for color reproduction will require the identification and traversal of roadblocks to its success. Among the drawbacks associated with spectral reproduction is a tremendous increase in data capture bandwidth and processing throughput. Methods are proposed for attenuating these increases with data-efficient methods based on adaptive multi-channel visible-spectrum capture and with low-dimensional approaches to spectral color management. First, concepts of adaptive spectral capture are explored. Current spectral imaging approaches require tens of camera channels although previous research has shown that five to nine channels can be sufficient for scenes limited to pre-characterized spectra. New camera systems are proposed and evaluated that incorporate adaptive features reducing capture demands to a similar few channels with the advantage that a priori information about expected scenes is not needed at the time of system design. Second, proposals are made to address problems arising from the significant increase in dimensionality within the image processing stage of a spectral image workflow. An Interim Connection Space (ICS) is proposed as a reduced dimensionality bottleneck in the processing workflow allowing support of spectral color management. In combination these investigations into data-efficient approaches improve two critical points in the spectral reproduction workflow: capture and processing. The progress reported here should help the color reproduction community appreciate that the route to data-efficient multi-channel visible spectrum imaging is passable and can be considered for many imaging modalities

    Face recognition by means of advanced contributions in machine learning

    Get PDF
    Face recognition (FR) has been extensively studied, due to both scientific fundamental challenges and current and potential applications where human identification is needed. FR systems have the benefits of their non intrusiveness, low cost of equipments and no useragreement requirements when doing acquisition, among the most important ones. Nevertheless, despite the progress made in last years and the different solutions proposed, FR performance is not yet satisfactory when more demanding conditions are required (different viewpoints, blocked effects, illumination changes, strong lighting states, etc). Particularly, the effect of such non-controlled lighting conditions on face images leads to one of the strongest distortions in facial appearance. This dissertation addresses the problem of FR when dealing with less constrained illumination situations. In order to approach the problem, a new multi-session and multi-spectral face database has been acquired in visible, Near-infrared (NIR) and Thermal infrared (TIR) spectra, under different lighting conditions. A theoretical analysis using information theory to demonstrate the complementarities between different spectral bands have been firstly carried out. The optimal exploitation of the information provided by the set of multispectral images has been subsequently addressed by using multimodal matching score fusion techniques that efficiently synthesize complementary meaningful information among different spectra. Due to peculiarities in thermal images, a specific face segmentation algorithm has been required and developed. In the final proposed system, the Discrete Cosine Transform as dimensionality reduction tool and a fractional distance for matching were used, so that the cost in processing time and memory was significantly reduced. Prior to this classification task, a selection of the relevant frequency bands is proposed in order to optimize the overall system, based on identifying and maximizing independence relations by means of discriminability criteria. The system has been extensively evaluated on the multispectral face database specifically performed for our purpose. On this regard, a new visualization procedure has been suggested in order to combine different bands for establishing valid comparisons and giving statistical information about the significance of the results. This experimental framework has more easily enabled the improvement of robustness against training and testing illumination mismatch. Additionally, focusing problem in thermal spectrum has been also addressed, firstly, for the more general case of the thermal images (or thermograms), and then for the case of facialthermograms from both theoretical and practical point of view. In order to analyze the quality of such facial thermograms degraded by blurring, an appropriate algorithm has been successfully developed. Experimental results strongly support the proposed multispectral facial image fusion, achieving very high performance in several conditions. These results represent a new advance in providing a robust matching across changes in illumination, further inspiring highly accurate FR approaches in practical scenarios.El reconeixement facial (FR) ha estat àmpliament estudiat, degut tant als reptes fonamentals científics que suposa com a les aplicacions actuals i futures on requereix la identificació de les persones. Els sistemes de reconeixement facial tenen els avantatges de ser no intrusius,presentar un baix cost dels equips d’adquisició i no la no necessitat d’autorització per part de l’individu a l’hora de realitzar l'adquisició, entre les més importants. De totes maneres i malgrat els avenços aconseguits en els darrers anys i les diferents solucions proposades, el rendiment del FR encara no resulta satisfactori quan es requereixen condicions més exigents (diferents punts de vista, efectes de bloqueig, canvis en la il·luminació, condicions de llum extremes, etc.). Concretament, l'efecte d'aquestes variacions no controlades en les condicions d'il·luminació sobre les imatges facials condueix a una de les distorsions més accentuades sobre l'aparença facial. Aquesta tesi aborda el problema del FR en condicions d'il·luminació menys restringides. Per tal d'abordar el problema, hem adquirit una nova base de dades de cara multisessió i multiespectral en l'espectre infraroig visible, infraroig proper (NIR) i tèrmic (TIR), sota diferents condicions d'il·luminació. En primer lloc s'ha dut a terme una anàlisi teòrica utilitzant la teoria de la informació per demostrar la complementarietat entre les diferents bandes espectrals objecte d’estudi. L'òptim aprofitament de la informació proporcionada pel conjunt d'imatges multiespectrals s'ha abordat posteriorment mitjançant l'ús de tècniques de fusió de puntuació multimodals, capaces de sintetitzar de manera eficient el conjunt d’informació significativa complementària entre els diferents espectres. A causa de les característiques particulars de les imatges tèrmiques, s’ha requerit del desenvolupament d’un algorisme específic per la segmentació de les mateixes. En el sistema proposat final, s’ha utilitzat com a eina de reducció de la dimensionalitat de les imatges, la Transformada del Cosinus Discreta i una distància fraccional per realitzar les tasques de classificació de manera que el cost en temps de processament i de memòria es va reduir de forma significa. Prèviament a aquesta tasca de classificació, es proposa una selecció de les bandes de freqüències més rellevants, basat en la identificació i la maximització de les relacions d'independència per mitjà de criteris discriminabilitat, per tal d'optimitzar el conjunt del sistema. El sistema ha estat àmpliament avaluat sobre la base de dades de cara multiespectral, desenvolupada pel nostre propòsit. En aquest sentit s'ha suggerit l’ús d’un nou procediment de visualització per combinar diferents bandes per poder establir comparacions vàlides i donar informació estadística sobre el significat dels resultats. Aquest marc experimental ha permès més fàcilment la millora de la robustesa quan les condicions d’il·luminació eren diferents entre els processos d’entrament i test. De forma complementària, s’ha tractat la problemàtica de l’enfocament de les imatges en l'espectre tèrmic, en primer lloc, pel cas general de les imatges tèrmiques (o termogrames) i posteriorment pel cas concret dels termogrames facials, des dels punt de vista tant teòric com pràctic. En aquest sentit i per tal d'analitzar la qualitat d’aquests termogrames facials degradats per efectes de desenfocament, s'ha desenvolupat un últim algorisme. Els resultats experimentals recolzen fermament que la fusió d'imatges facials multiespectrals proposada assoleix un rendiment molt alt en diverses condicions d’il·luminació. Aquests resultats representen un nou avenç en l’aportació de solucions robustes quan es contemplen canvis en la il·luminació, i esperen poder inspirar a futures implementacions de sistemes de reconeixement facial precisos en escenaris no controlats.Postprint (published version

    Video-driven Neural Physically-based Facial Asset for Production

    Full text link
    Production-level workflows for producing convincing 3D dynamic human faces have long relied on an assortment of labor-intensive tools for geometry and texture generation, motion capture and rigging, and expression synthesis. Recent neural approaches automate individual components but the corresponding latent representations cannot provide artists with explicit controls as in conventional tools. In this paper, we present a new learning-based, video-driven approach for generating dynamic facial geometries with high-quality physically-based assets. For data collection, we construct a hybrid multiview-photometric capture stage, coupling with ultra-fast video cameras to obtain raw 3D facial assets. We then set out to model the facial expression, geometry and physically-based textures using separate VAEs where we impose a global MLP based expression mapping across the latent spaces of respective networks, to preserve characteristics across respective attributes. We also model the delta information as wrinkle maps for the physically-based textures, achieving high-quality 4K dynamic textures. We demonstrate our approach in high-fidelity performer-specific facial capture and cross-identity facial motion retargeting. In addition, our multi-VAE-based neural asset, along with the fast adaptation schemes, can also be deployed to handle in-the-wild videos. Besides, we motivate the utility of our explicit facial disentangling strategy by providing various promising physically-based editing results with high realism. Comprehensive experiments show that our technique provides higher accuracy and visual fidelity than previous video-driven facial reconstruction and animation methods.Comment: For project page, see https://sites.google.com/view/npfa/ Notice: You may not copy, reproduce, distribute, publish, display, perform, modify, create derivative works, transmit, or in any way exploit any such content, nor may you distribute any part of this content over any network, including a local area network, sell or offer it for sale, or use such content to construct any kind of databas

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers
    corecore