4,167 research outputs found

    Use of Devolved Controllers in Data Center Networks

    Full text link
    In a data center network, for example, it is quite often to use controllers to manage resources in a centralized man- ner. Centralized control, however, imposes a scalability problem. In this paper, we investigate the use of multiple independent controllers instead of a single omniscient controller to manage resources. Each controller looks after a portion of the network only, but they together cover the whole network. This therefore solves the scalability problem. We use flow allocation as an example to see how this approach can manage the bandwidth use in a distributed manner. The focus is on how to assign components of a network to the controllers so that (1) each controller only need to look after a small part of the network but (2) there is at least one controller that can answer any request. We outline a way to configure the controllers to fulfill these requirements as a proof that the use of devolved controllers is possible. We also discuss several issues related to such implementation.Comment: Appears in INFOCOM 2011 Cloud Computing Worksho

    Don't Repeat Yourself: Seamless Execution and Analysis of Extensive Network Experiments

    Full text link
    This paper presents MACI, the first bespoke framework for the management, the scalable execution, and the interactive analysis of a large number of network experiments. Driven by the desire to avoid repetitive implementation of just a few scripts for the execution and analysis of experiments, MACI emerged as a generic framework for network experiments that significantly increases efficiency and ensures reproducibility. To this end, MACI incorporates and integrates established simulators and analysis tools to foster rapid but systematic network experiments. We found MACI indispensable in all phases of the research and development process of various communication systems, such as i) an extensive DASH video streaming study, ii) the systematic development and improvement of Multipath TCP schedulers, and iii) research on a distributed topology graph pattern matching algorithm. With this work, we make MACI publicly available to the research community to advance efficient and reproducible network experiments
    corecore