148 research outputs found

    Simulation for proposed DTN algorithm & Analysis

    Get PDF
    There are different simulation tools available for simulating the algorithms of mobile ad-hoc networks, and these tools are user friendly, means easy to work upon. In case of DTN algorithm implementation, these tool cannot work properly because of the frequent disconnection environment of nodes in DTN. We have used The ONE simulator [33] for implementing our proposed DTN algorithm

    Routing algorithms classification & Proposed Routing Algorithm for DTN

    Get PDF
    This paper provides an introduction to Delay Tolerant Networks (DTN)alogorithms and would touch upon some basic classification. Continuous connectivity is difficult in today�s wireless world. The data preservation and security in challenged and intermittent network, is of paramount importance. In this paper, we will see how DTN provides detail classification and discription for further studies & application.an effective alternative. Security of data becomes important in disrupted networks; this paper would also discuss Praposed Routing algorithms with DTNs

    Enabling multicast slices in edge networks

    Get PDF
    Telecommunication networks are undergoing a disruptive transition towards distributed mobile edge networks with virtualized network functions (VNFs) (e.g., firewalls, Intrusion Detection Systems (IDSs), and transcoders) within the proximity of users. This transition will enable network services, especially IoT applications, to be provisioned as network slices with sequences of VNFs, in order to guarantee the performance and security of their continuous data and control flows. In this paper we study the problems of delay-aware network slicing for multicasting traffic of IoT applications in edge networks. We first propose exact solutions by formulating the problems into Integer Linear Programs (ILPs). We further devise an approximation algorithm with an approximation ratio for the problem of delay-aware network slicing for a single multicast slice, with the objective to minimize the implementation cost of the network slice subject to its delay requirement constraint. Given multiple multicast slicing requests, we also propose an efficient heuristic that admits as many user requests as possible, through exploring the impact of a non-trivial interplay of the total computing resource demand and delay requirements. We then investigate the problem of delay-oriented network slicing with given levels of delay guarantees, considering that different types of IoT applications have different levels of delay requirements, for which we propose an efficient heuristic based on Reinforcement Learning (RL). We finally evaluate the performance of the proposed algorithms through both simulations and implementations in a real test-bed. Experimental results demonstrate that the proposed algorithms is promising

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Resource discovery for distributed computing systems: A comprehensive survey

    Get PDF
    Large-scale distributed computing environments provide a vast amount of heterogeneous computing resources from different sources for resource sharing and distributed computing. Discovering appropriate resources in such environments is a challenge which involves several different subjects. In this paper, we provide an investigation on the current state of resource discovery protocols, mechanisms, and platforms for large-scale distributed environments, focusing on the design aspects. We classify all related aspects, general steps, and requirements to construct a novel resource discovery solution in three categories consisting of structures, methods, and issues. Accordingly, we review the literature, analyzing various aspects for each category
    corecore