13 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationAbstraction plays an important role in digital design, analysis, and verification, as it allows for the refinement of functions through different levels of conceptualization. This dissertation introduces a new method to compute a symbolic, canonical, word-level abstraction of the function implemented by a combinational logic circuit. This abstraction provides a representation of the function as a polynomial Z = F(A) over the Galois field F2k , expressed over the k-bit input to the circuit, A. This representation is easily utilized for formal verification (equivalence checking) of combinational circuits. The approach to abstraction is based upon concepts from commutative algebra and algebraic geometry, notably the Grobner basis theory. It is shown that the polynomial F(A) can be derived by computing a Grobner basis of the polynomials corresponding to the circuit, using a specific elimination term order based on the circuits topology. However, computing Grobner bases using elimination term orders is infeasible for large circuits. To overcome these limitations, this work introduces an efficient symbolic computation to derive the word-level polynomial. The presented algorithms exploit i) the structure of the circuit, ii) the properties of Grobner bases, iii) characteristics of Galois fields F2k , and iv) modern algorithms from symbolic computation. A custom abstraction tool is designed to efficiently implement the abstraction procedure. While the concept is applicable to any arbitrary combinational logic circuit, it is particularly powerful in verification and equivalence checking of hierarchical, custom designed and structurally dissimilar Galois field arithmetic circuits. In most applications, the field size and the datapath size k in the circuits is very large, up to 1024 bits. The proposed abstraction procedure can exploit the hierarchy of the given Galois field arithmetic circuits. Our experiments show that, using this approach, our tool can abstract and verify Galois field arithmetic circuits up to 1024 bits in size. Contemporary techniques fail to verify these types of circuits beyond 163 bits and cannot abstract a canonical representation beyond 32 bits

    Design of a novel hybrid cryptographic processor

    Get PDF
    viii, 87 leaves : ill. (some col.) ; 28 cm.A new multiplier that supports fields GF(p) and GF (2n) for the public-key cryptography, and fields GF (28) for the secret-key cryptography is proposed in this thesis. Based on the core multiplier and other extracted common operations, a novel hybrid crypto-processor is built which processes both public-key and secret-key cryptosystems. The corresponding instruction set is also presented. Three cryptographic algorithms: the Elliptic Curve Cryptography (ECC), AES and RC5 are focused to run in the processor. To compute scalar multiplication kP efficiently, a blend of efficient algorthms on elliptic curves and coordinates selections and of hardware architecture that supports arithmetic operations on finite fields is requried. The Nonadjacent Form (NAF) of k is used in Jacobian projective coordinates over GF(p); Montgomery scalar multiplication is utilized in projective coordinates over GF(2n). The dual-field multiplier is used to support multiplications over GF(p) and GF(2n) according to multiple-precision Montgomery multiplications algorithms. The design ideas of AES and RC5 are also described. The proposed hybrid crypto-processor increases the flexibility of security schemes and reduces the total cost of cryptosystems

    Novel Single and Hybrid Finite Field Multipliers over GF(2m) for Emerging Cryptographic Systems

    Get PDF
    With the rapid development of economic and technical progress, designers and users of various kinds of ICs and emerging embedded systems like body-embedded chips and wearable devices are increasingly facing security issues. All of these demands from customers push the cryptographic systems to be faster, more efficient, more reliable and safer. On the other hand, multiplier over GF(2m) as the most important part of these emerging cryptographic systems, is expected to be high-throughput, low-complexity, and low-latency. Fortunately, very large scale integration (VLSI) digital signal processing techniques offer great facilities to design efficient multipliers over GF(2m). This dissertation focuses on designing novel VLSI implementation of high-throughput low-latency and low-complexity single and hybrid finite field multipliers over GF(2m) for emerging cryptographic systems. Low-latency (latency can be chosen without any restriction) high-speed pentanomial basis multipliers are presented. For the first time, the dissertation also develops three high-throughput digit-serial multipliers based on pentanomials. Then a novel realization of digit-level implementation of multipliers based on redundant basis is introduced. Finally, single and hybrid reordered normal basis bit-level and digit-level high-throughput multipliers are presented. To the authors knowledge, this is the first time ever reported on multipliers with multiple throughput rate choices. All the proposed designs are simple and modular, therefore suitable for VLSI implementation for various emerging cryptographic systems

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life

    Theoretical Concepts of Quantum Mechanics

    Get PDF
    Quantum theory as a scientific revolution profoundly influenced human thought about the universe and governed forces of nature. Perhaps the historical development of quantum mechanics mimics the history of human scientific struggles from their beginning. This book, which brought together an international community of invited authors, represents a rich account of foundation, scientific history of quantum mechanics, relativistic quantum mechanics and field theory, and different methods to solve the Schrodinger equation. We wish for this collected volume to become an important reference for students and researchers

    Space programs summary no. 37-27, volume IV for the period April 1, 1964 to May 31, 1964. Supporting research and advanced development

    Get PDF
    Space exploration programs - systems analysis - spacecraft power and guidance systems - propellant engineering and communications system

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity
    corecore