12 research outputs found

    Comunicações veiculares híbridas

    Get PDF
    Vehicle Communications is a promising research field, with a great potential for the development of new applications capable of improving road safety, traffic efficiency, as well as passenger comfort and infotainment. Vehicle communication technologies can be short-range, such as ETSI ITS-G5 or the 5G PC5 sidelink channel, or long-range, using the cellular network (LTE or 5G). However, none of the technologies alone can support the expected variety of applications for a large number of vehicles, nor all the temporal and spatial requirements of connected and autonomous vehicles. Thus, it is proposed the collaborative or hybrid use of short-range communications, with lower latency, and of long-range technologies, potentially with higher latency, but integrating aggregated data of wider geographic scope. In this context, this work presents a hybrid vehicle communications model, capable of providing connectivity through two Radio Access Technologies (RAT), namely, ETSI ITS-G5 and LTE, to increase the probability of message delivery and, consequently, achieving a more robust, efficient and secure vehicle communication system. The implementation of short-range communication channels is done using Raw Packet Sockets, while the cellular connection is established using the Advanced Messaging Queuing Protocol (AMQP) protocol. The main contribution of this dissertation focuses on the design, implementation and evaluation of a Hybrid Routing Sublayer, capable of isolating messages that are formed/decoded from transmission/reception processes. This layer is, therefore, capable of managing traffic coming/destined to the application layer of intelligent transport systems (ITS), adapting and passing ITS messages between the highest layers of the protocol stack and the available radio access technologies. The Hybrid Routing Sublayer also reduces the financial costs due to the use of cellular communications and increases the efficiency of the use of the available electromagnetic spectrum, by introducing a cellular link controller using a Beacon Detector, which takes informed decisions related to the need to connect to a cellular network, according to different scenarios. The experimental results prove that hybrid vehicular communications meet the requirements of cooperative intelligent transport systems, by taking advantage of the benefits of both communication technologies. When evaluated independently, the ITS-G5 technology has obvious advantages in terms of latency over the LTE technology, while the LTE technology performs better than ITS-G5, in terms of throughput and reliability.As Comunicações Veiculares são um campo de pesquisa promissor, com um grande potencial de desenvolvimento de novas aplicações capazes de melhorar a segurança nas estradas, a eficiência do tráfego, bem com o conforto e entretenimento dos passageiros. As tecnologias de comunicação veícular podem ser de curto alcance, como por exemplo ETSI ITS-G5 ou o canal PC5 do 5G, ou de longo alcance, recorrendo à rede celular (LTE ou 5G). No entanto, nenhuma das tecnologias por si só, consegue suportar a variedade expectável de aplicações para um número de veículos elevado nem tampouco todos os requisitos temporais e espaciais dos veículos conectados e autónomos. Assim, é proposto o uso colaborativo ou híbrido de comunicações de curto alcance, com latências menores, e de tecnologias de longo alcance, potencialmente com maiores latências, mas integrando dados agregados de maior abrangência geográfica. Neste contexto, este trabalho apresenta um modelo de comunicações veiculares híbrido, capaz de fornecer conectividade por meio de duas Tecnologias de Acesso por Rádio (RAT), a saber, ETSI ITS-G5 e LTE, para aumentar a probabilidade de entrega de mensagens e, consequentemente, alcançar um sistema de comunicação veicular mais robusto, eficiente e seguro. A implementação de canais de comunicação de curto alcance é feita usando Raw Packet Sockets, enquanto que a ligação celular é estabelecida usando o protocolo Advanced Messaging Queuing Protocol (AMQP). A contribuição principal desta dissertação foca-se no projeto, implementação e avaliação de uma sub camada hibrída de encaminhamento, capaz de isolar mensagens que se formam/descodificam a partir de processos de transmissão/receção. Esta camadada é, portanto, capaz de gerir o tráfego proveniente/destinado à camada de aplicação de sistemas inteligentes de transportes (ITS) adaptando e passando mensagens ITS entre as camadas mais altas da pilha protocolar e as tecnologias de acesso rádio disponíveis. A sub camada hibrída de encaminhamento também potencia uma redução dos custos financeiros devidos ao uso de comunicações celulares e aumenta a eficiência do uso do espectro electromagnético disponível, ao introduzir um múdulo controlador da ligação celular, utilizando um Beacon Detector, que toma decisões informadas relacionadas com a necessidade de uma conexão a uma rede celular, de acordo com diferentes cenários. Os resultados experimentais comprovam que as comunicações veículares híbridas cumprem os requisitos dos sistemas cooperativos de transporte inteligentes, ao tirarem partido das vantagens de ambas tecnologias de comunicação. Quando avaliadas de forma independente, constata-se que que a tecnologia ITS-G5 tem vantagens evidentes em termos de latência sobre a tecnologia LTE, enquanto que a tecnologia LTE tem melhor desempenho que a LTE, ai nível de débito e fiabilidade.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Intelligent and bandwidth-efficient medium access control protocols for IEEE 802.11p-based Vehicular Ad hoc Networks

    Get PDF
    Vehicle-to-Vehicle (V2V) technology aims to enable safer and more sophisticated transportation via the spontaneous formation of Vehicular Ad hoc Networks (VANETs). This type of wireless networks allows the exchange of kinematic and other data among vehicles, for the primary purpose of safer and more efficient driving, as well as efficient traffic management and other third-party services. Their infrastructure-less, unbounded nature allows the formation of dense networks that present a channel sharing issue, which is harder to tackle than in conventional WLANs. This thesis focuses on optimising channel access strategies, which is important for the efficient usage of the available wireless bandwidth and the successful deployment of VANETs. To start with, the default channel access control method for V2V is evaluated hardware via modifying the appropriate wireless interface Linux driver to enable finer on-the-fly control of IEEE 802.11p access control layer parameters. More complex channel sharing scenarios are evaluated via simulations and findings on the behaviour of the access control mechanism are presented. A complete channel sharing efficiency assessment is conducted, including throughput, fairness and latency measurements. A new IEEE 802.11p-compatible Q-Learning-based access control approach that improves upon the studied protocol is presented. The stations feature algorithms that “learn” how to act optimally in VANETs in order to maximise their achieved packet delivery and minimise bandwidth wastage. The feasibility of Q-Learning to be used as the base of selflearning protocols for IEEE 802.11p-based V2V communication access control in dense environments is investigated in terms of parameter tuning, necessary time of exploration, achieving latency requirements, scaling, multi-hop and accommodation of simultaneous applications. Additionally, the novel Collection Contention Estimation (CCE) mechanism for Q-Learning-based access control is presented. By embedding it on the Q-Learning agents, faster convergence, higher throughput, better service separation and short-term fairness are achieved in simulated network deployments. The acquired new insights on the network performance of the proposed algorithms can provide precise guidelines for efficient designs of practical, reliable, fair and ultra-low latency V2V communication systems for dense topologies. These results can potentially have an impact across a range of related areas, including various types of wireless networks and resource allocation for these, network protocol and transceiver design as well as QLearning applicability and considerations for correct use

    Wireless communication, sensing, and REM: A security perspective

    Get PDF
    The diverse requirements of next-generation communication systems necessitate awareness, flexibility, and intelligence as essential building blocks of future wireless networks. The awareness can be obtained from the radio signals in the environment using wireless sensing and radio environment mapping (REM) methods. This is, however, accompanied by threats such as eavesdropping, manipulation, and disruption posed by malicious attackers. To this end, this work analyzes the wireless sensing and radio environment awareness mechanisms, highlighting their vulnerabilities and provides solutions for mitigating them. As an example, the different threats to REM and its consequences in a vehicular communication scenario are described. Furthermore, the use of REM for securing communications is discussed and future directions regarding sensing/REM security are highlighted

    Investigation of Vehicle-to-Everything (V2X) Communication for Autonomous Control of Connected Vehicles

    Get PDF
    Autonomous Driving Vehicles (ADVs) has received considerable attention in recent years by academia and industry, bringing about a paradigm shift in Intelligent Transportation Systems (ITS), where vehicles operate in close proximity through wireless communication. It is envisioned as a promising technology for realising efficient and intelligent transportation systems, with potential applications for civilian and military purposes. Vehicular network management for ADVs is challenging as it demands mobility, location awareness, high reliability, and low latency data traffic. This research aims to develop and implement vehicular communication in conjunction with a driving algorithm for ADVs feedback control system with a specific focus on the safe displacement of vehicle platoon while sensing the surrounding environment, such as detecting road signs and communicate with other road users such as pedestrian, motorbikes, non-motorised vehicles and infrastructure. However, in order to do so, one must investigate crucial aspects related to the available technology, such as driving behaviour, low latency communication requirement, communication standards, and the reliability of such a mechanism to decrease the number of traffic accidents and casualties significantly. To understand the behaviour of wireless communication compared to the theoretical data rates, throughput, and roaming behaviour in a congested indoor line-of-sight heterogeneous environment, we first carried out an experimental study for IEEE 802.11a, 802.11n and 802.11ac standards in a 5 GHz frequency spectrum. We validated the results with an analytical path loss model as it is essential to understand how the client device roams or decides to roam from one Access Point to another and vice-versa. We observed seamless roaming between the tested protocols irrespective of their operational environment (indoor or outdoor); their throughput efficiency and data rate were also improved by 8-12% when configured with Short Guard Interval (SGI) of 400ns compared to the theoretical specification of the tested protocols. Moreover, we also investigated the Software-Defined Networking (SDN) for vehicular communication and compared it with the traditional network, which is generally incorporated vertically where control and data planes are bundled collectively. The SDN helped gain more flexibility to support multiple core networks for vehicular communication and tackle the potential challenges of network scalability for vehicular applications raised by the ADVs. In particular, we demonstrate that the SDN improves throughput efficiency by 4% compared to the traditional network while ensuring efficient bandwidth and resource management. Finally, we proposed a novel data-driven coordination model which incorporates Vehicle-to-Everything (V2X) communication and Intelligent Driver Model (IDM), together called V2X Enabled Intelligent Driver Model (VX-IDM). Our model incorporates a Car-Following Model (CFM), i.e., IDM, to model a vehicle platoon in an urban and highway traffic scenario while ensuring the vehicle platoon's safety with the integration of IEEE 802.11p Vehicle-to-Infrastructure (V2I) communication scheme. The model integrates the 802.11p V2I communication channel with the IDM in MATLAB using ODE‐45 and utilises the 802.11p simulation toolbox for configuring vehicular channels. To demonstrate model functionality in urban and highway traffic environments, we developed six case studies. We also addressed the heterogeneity issue of wireless networks to improve the overall network reliability and efficiency by estimating the Signal-to-Noise Ratio (SNR) parameters for the platoon vehicle's displacement and location on the road from Road-Side-Units (RSUs). The simulation results showed that inter-vehicle spacing could be steadily maintained at a minimum safe value at all the time. Moreover, the model has a fault-tolerant mechanism that works even when communication with infrastructure is interrupted or unavailable, making the VX-IDM model collision-free

    6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities

    Get PDF
    We are on the cusp of a new era of connected autonomous vehicles with unprecedented user experiences, tremendously improved road safety and air quality, highly diverse transportation environments and use cases, as well as a plethora of advanced applications. Realizing this grand vision requires a significantly enhanced vehicle-to-everything (V2X) communication network which should be extremely intelligent and capable of concurrently supporting hyper-fast, ultra-reliable, and low-latency massive information exchange. It is anticipated that the sixth-generation (6G) communication systems will fulfill these requirements of the next-generation V2X. In this article, we outline a series of key enabling technologies from a range of domains, such as new materials, algorithms, and system architectures. Aiming for truly intelligent transportation systems, we envision that machine learning will play an instrumental role for advanced vehicular communication and networking. To this end, we provide an overview on the recent advances of machine learning in 6G vehicular networks. To stimulate future research in this area, we discuss the strength, open challenges, maturity, and enhancing areas of these technologies

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    D6.6 Final report on the METIS 5G system concept and technology roadmap

    Full text link
    This deliverable presents the METIS 5G system concept which was developed to fulfil the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems to include new usage scenarios. The METIS 5G system concept consists of three generic 5G services and four main enablers. The three generic 5G services are Extreme Mobile BroadBand (xMBB), Massive Machine- Type Communications (mMTC), and Ultra-reliable Machine-Type Communication (uMTC). The four main enablers are Lean System Control Plane (LSCP), Dynamic RAN, Localized Contents and Traffic Flows, and Spectrum Toolbox. An overview of the METIS 5G architecture is given, as well as spectrum requirements and considerations. System-level evaluation of the METIS 5G system concept has been conducted, and we conclude that the METIS technical objectives are met. A technology roadmap outlining further 5G development, including a timeline and recommended future work is given.Popovski, P.; Mange, G.; Gozalvez -Serrano, D.; Rosowski, T.; Zimmermann, G.; Agyapong, P.; Fallgren, M.... (2014). D6.6 Final report on the METIS 5G system concept and technology roadmap. http://hdl.handle.net/10251/7676

    Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways

    Get PDF
    [Abstract] Nowadays, the railway industry is in a position where it is able to exploit the opportunities created by the IIoT (Industrial Internet of Things) and enabling communication technologies under the paradigm of Internet of Trains. This review details the evolution of communication technologies since the deployment of GSM-R, describing the main alternatives and how railway requirements, specifications and recommendations have evolved over time. The advantages of the latest generation of broadband communication systems (e.g., LTE, 5G, IEEE 802.11ad) and the emergence of Wireless Sensor Networks (WSNs) for the railway environment are also explained together with the strategic roadmap to ensure a smooth migration from GSM-R. Furthermore, this survey focuses on providing a holistic approach, identifying scenarios and architectures where railways could leverage better commercial IIoT capabilities. After reviewing the main industrial developments, short and medium-term IIoT-enabled services for smart railways are evaluated. Then, it is analyzed the latest research on predictive maintenance, smart infrastructure, advanced monitoring of assets, video surveillance systems, railway operations, Passenger and Freight Information Systems (PIS/FIS), train control systems, safety assurance, signaling systems, cyber security and energy efficiency. Overall, it can be stated that the aim of this article is to provide a detailed examination of the state-of-the-art of different technologies and services that will revolutionize the railway industry and will allow for confronting today challenges.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D R2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/01Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-
    corecore