2,892 research outputs found

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Model Predictive Control for Signal Temporal Logic Specification

    Get PDF
    We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control

    Reducing Clocks in Timed Automata while Preserving Bisimulation

    Full text link
    Model checking timed automata becomes increasingly complex with the increase in the number of clocks. Hence it is desirable that one constructs an automaton with the minimum number of clocks possible. The problem of checking whether there exists a timed automaton with a smaller number of clocks such that the timed language accepted by the original automaton is preserved is known to be undecidable. In this paper, we give a construction, which for any given timed automaton produces a timed bisimilar automaton with the least number of clocks. Further, we show that such an automaton with the minimum possible number of clocks can be constructed in time that is doubly exponential in the number of clocks of the original automaton.Comment: 28 pages including reference, 8 figures, full version of paper accepted in CONCUR 201

    The Power of Proofs: New Algorithms for Timed Automata Model Checking (with Appendix)

    Full text link
    This paper presents the first model-checking algorithm for an expressive modal mu-calculus over timed automata, Lν,μrel,afL^{\mathit{rel}, \mathit{af}}_{\nu,\mu}, and reports performance results for an implementation. This mu-calculus contains extended time-modality operators and can express all of TCTL. Our algorithmic approach uses an "on-the-fly" strategy based on proof search as a means of ensuring high performance for both positive and negative answers to model-checking questions. In particular, a set of proof rules for solving model-checking problems are given and proved sound and complete; we encode our algorithm in these proof rules and model-check a property by constructing a proof (or showing none exists) using these rules. One noteworthy aspect of our technique is that we show that verification performance can be improved with \emph{derived rules}, whose correctness can be inferred from the more primitive rules on which they are based. In this paper, we give the basic proof rules underlying our method, describe derived proof rules to improve performance, and compare our implementation of this model checker to the UPPAAL tool.Comment: This is the preprint of the FORMATS 2014 paper, but this is the full version, containing the Appendix. The final publication is published from Springer, and is available at http://link.springer.com/chapter/10.1007%2F978-3-319-10512-3_9 on the Springer webpag

    Tropical Fourier-Motzkin elimination, with an application to real-time verification

    Get PDF
    We introduce a generalization of tropical polyhedra able to express both strict and non-strict inequalities. Such inequalities are handled by means of a semiring of germs (encoding infinitesimal perturbations). We develop a tropical analogue of Fourier-Motzkin elimination from which we derive geometrical properties of these polyhedra. In particular, we show that they coincide with the tropically convex union of (non-necessarily closed) cells that are convex both classically and tropically. We also prove that the redundant inequalities produced when performing successive elimination steps can be dynamically deleted by reduction to mean payoff game problems. As a complement, we provide a coarser (polynomial time) deletion procedure which is enough to arrive at a simply exponential bound for the total execution time. These algorithms are illustrated by an application to real-time systems (reachability analysis of timed automata).Comment: 29 pages, 8 figure

    Interpolation in local theory extensions

    Full text link
    In this paper we study interpolation in local extensions of a base theory. We identify situations in which it is possible to obtain interpolants in a hierarchical manner, by using a prover and a procedure for generating interpolants in the base theory as black-boxes. We present several examples of theory extensions in which interpolants can be computed this way, and discuss applications in verification, knowledge representation, and modular reasoning in combinations of local theories.Comment: 31 pages, 1 figur
    • …
    corecore