19 research outputs found

    Block oriented model order reduction of interconnected systems

    Get PDF
    Unintended and parasitic coupling effects are becoming more relevant in currently designed, small-scale/highfrequency RFICs. Electromagnetic (EM) based procedures must be used to generate accurate models for proper verification of system behaviour. But these EM methodologies may take advantage of structural sub-system organization as well as information inherent to the IC physical layout, to improve their efficiency. Model order reduction techniques, required for fast and accurate evaluation and simulation of such models, must address and may benefit from the provided hierarchical information. System-based interconnection techniques can handle some of these situations, but suffer from some drawbacks when applied to complete EM models. We will present an alternative methodology, based on similar principles, that overcomes the limitations of such approaches. The procedure, based on structure-preserving model order reduction techniques, is proved to be a generalization of the interconnected system based framework. Further improvements that allow a trade off between global error and block size, and thus allow a better control on the reduction, will be also presented

    Parameterized modeling and model order reduction for large electrical systems

    Get PDF

    A moment-matching scheme for the passivity-preserving model order reduction of indefinite descriptor systems with possible polynomial parts

    Get PDF
    Passivity-preserving model order reduction (MOR) of descriptor systems (DSs) is highly desired in the simulation of VLSI interconnects and on-chip passives. One popular method is PRIMA, a Krylov-subspace projection approach which preserves the passivity of positive semidefinite (PSD) structured DSs. However, system passivity is not guaranteed by PRIMA when the system is indefinite. Furthermore, the possible polynomial parts of singular systems are normally not captured. For indefinite DSs, positive-real balanced truncation (PRBT) can generate passive reduced-order models (ROMs), whose main bottleneck lies in solving the dual expensive generalized algebraic Riccati equations (GAREs). This paper presents a novel moment-matching MORfor indefinite DSs, which preserves both the system passivity and, if present, also the improper polynomial part. This method only requires solving one GARE, therefore it is cheaper than existing PRBT schemes. On the other hand, the proposed algorithm is capable of preserving the passivity of indefinite DSs, which is not guaranteed by traditional moment-matching MORs. Examples are finally presented showing that our method is superior to PRIMA in terms of accuracy. ©2011 IEEE.published_or_final_versionThe 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), Yokohama, Japan, 25-28 January 2011. In Proceedings of the 16th ASP-DAC, 2011, p. 49-54, paper 1C-

    Applications

    Get PDF

    System- and Data-Driven Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques

    Model Order Reduction

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Model order reduction techniques for circuit simulation

    Get PDF
    Includes bibliographical references (p. 156-160).Supported in part by the Semiconductor Research Corporation. SRC 93-SJ-558 Supported in part by the National Science Foundation / Advanced Research Projects Agency. MIP 91-17724Luis Miguel Silveira

    Model order reduction techniques for circuit simulation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references.by ?Luís Miguel Silveira.Ph.D

    SCEE 2008 book of abstracts : the 7th International Conference on Scientific Computing in Electrical Engineering (SCEE 2008), September 28 – October 3, 2008, Helsinki University of Technology, Espoo, Finland

    Get PDF
    This report contains abstracts of presentations given at the SCEE 2008 conference.reviewe
    corecore