18 research outputs found

    Data-centric Misbehavior Detection in VANETs

    Full text link
    Detecting misbehavior (such as transmissions of false information) in vehicular ad hoc networks (VANETs) is very important problem with wide range of implications including safety related and congestion avoidance applications. We discuss several limitations of existing misbehavior detection schemes (MDS) designed for VANETs. Most MDS are concerned with detection of malicious nodes. In most situations, vehicles would send wrong information because of selfish reasons of their owners, e.g. for gaining access to a particular lane. Because of this (\emph{rational behavior}), it is more important to detect false information than to identify misbehaving nodes. We introduce the concept of data-centric misbehavior detection and propose algorithms which detect false alert messages and misbehaving nodes by observing their actions after sending out the alert messages. With the data-centric MDS, each node can independently decide whether an information received is correct or false. The decision is based on the consistency of recent messages and new alert with reported and estimated vehicle positions. No voting or majority decisions is needed, making our MDS resilient to Sybil attacks. Instead of revoking all the secret credentials of misbehaving nodes, as done in most schemes, we impose fines on misbehaving nodes (administered by the certification authority), discouraging them to act selfishly. This reduces the computation and communication costs involved in revoking all the secret credentials of misbehaving nodes.Comment: 12 page

    Autonomic Vehicular Networks: Safety, Privacy, Cybersecurity and Societal Issues

    Get PDF
    Safety, efficiency, privacy, and cybersecurity can be achieved jointly in self-organizing networks of communicating vehicles of various automated driving levels. The underlying approach, solutions and novel results are briefly exposed. We explain why we are faced with a crucial choice regarding motorized society and cyber surveillance

    Autonomic Vehicular Networks: Safety, Privacy, Cybersecurity and Societal Issues

    Get PDF
    International audienceSafety, efficiency, privacy, and cybersecurity can be achieved jointly in self-organizing networks of communicating vehicles of various automated driving levels. The underlying approach, solutions and novel results are briefly exposed. We explain why we are faced with a crucial choice regarding motorized society and cyber surveillance

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    VANET SECURITY FRAMEWORK FOR LOW LATENCY SAFETY APPLICATIONS

    Get PDF
    Vehicular Ad hoc Network (VANET) is a communication network for vehicles on the road. The concept of VANET is to create communication between vehicles, such as one vehicle is able to inform another vehicle about the road conditions. Communication is possible by vehicle to vehicle (V2V) and vehicle to road side unit (V2R). Presently, VANET technology is surrounded with security challenges and it is essentially important for VANET to successfully implement a security measure according to the safety applications requirements. Many researchers have proposed a number of solutions to counter security attacks and also to improve certain aspects of security i.e. authentication, privacy, and non-repudiation. The current most suitable security scheme for VANET is an Elliptic Curve Digital Signature Algorithm (ECDSA) asymmetric security mechanism. ECDSA is small in key size but it provides the same level of security as the large key sized scheme. However ECDSA is associated with high computational cost, thus lacking applicability in life-critical safety messaging. Due to that reason, alternative security schemes have been proposed, such as symmetric methods which provide faster communication, but at the expense of reduced security. Hence, hybrid and hardware based solutions have been proposed by researchers to mitigate the issue. However, these solutions still do not satisfy the existing safety applications standard or have larger message size due to increased message drop ratio. In this thesis, a security framework is presented; one that uses both standard asymmetric PKI and symmetric cryptography for faster and secured safety message exchange. The proposed framework is expected to improve the security mechanism in VANET by developing trust relationship among the neighboring nodes, hence forming trusted groups. The trust is established via Trusted Platform Module (TPM) and group communication. In this study, the proposed framework methods are simulated using two propagation models, i.e. two ray ground model and Nakagami model for VANET environment (802.11p). In this simulation, two traffic scenarios such as highway and urban are established. The outcome of both simulation scenarios is analyzed to identify the performance of the proposed methods in terms of latency (End-to-End Delay and Processing Delay). Also, the proposed V2V protocol for a framework is validated using a software in order to establish trust among vehicles

    An intelligent intrusion detection system for external communications in autonomous vehicles

    Get PDF
    Advancements in computing, electronics and mechanical systems have resulted in the creation of a new class of vehicles called autonomous vehicles. These vehicles function using sensory input with an on-board computation system. Self-driving vehicles use an ad hoc vehicular network called VANET. The network has ad hoc infrastructure with mobile vehicles that communicate through open wireless channels. This thesis studies the design and implementation of a novel intelligent intrusion detection system which secures the external communication of self-driving vehicles. This thesis makes the following four contributions: It proposes a hybrid intrusion detection system to protect the external communication in self-driving vehicles from potential attacks. This has been achieved using fuzzification and artificial intelligence. The second contribution is the incorporation of the Integrated Circuit Metrics (ICMetrics) for improved security and privacy. By using the ICMetrics, specific device features have been used to create a unique identity for vehicles. Our work is based on using the bias in on board sensory systems to create ICMetrics for self-driving vehicles. The incorporation of fuzzy petri net in autonomous vehicles is the third contribution of the thesis. Simulation results show that the scheme can successfully detect denial-of-service attacks. The design of a clustering based hierarchical detection system has also been presented to detect worm hole and Sybil attacks. The final contribution of this research is an integrated intrusion detection system which detects various attacks by using a central database in BusNet. The proposed schemes have been simulated using the data extracted from trace files. Simulation results have been compared and studied for high levels of detection capability and performance. Analysis shows that the proposed schemes provide high detection rate with a low rate of false alarm. The system can detect various attacks in an optimised way owing to a reduction in the number of features, fuzzification

    Protection de la vie privée, innocuité et immunité envers les cybermenaces dans les futurs réseaux de véhicules autonomes connectés

    Get PDF
    International audienceNi les communications radio envisagées pour les véhicules autonomes connectés actuellement définies par des standards, ni le balisage périodique ne procurent de propriétés d'innocuité (quasi-élimination des accidents graves) meilleures que celles assurées par la robotique embarquée. Les protocoles sup-plémentaires fondés sur la pseudonymie à clés publiques sont imparfaits. Les atteintes à la vie privée, l'espionnage et les cyberattaques de véhicules sont pos-sibles. Les analyses qui mettent en évidence les faiblesses de ces approches (ensemble baptisé WAVE 1.0) sont détaillées, suivies d'une présentation de solutions qui assurent à la fois l'innocuité maximale et l'immunité envers les cy-bermenaces (ensemble baptisé WAVE 2.0). On met en évidence le choix de société induit par le choix entre WAVE 1.0 et WAVE 2.0

    Location Privacy In Emerging Network-Based Applications

    Get PDF
    With the wide spread of computer systems and networks, privacy has become an issue that increasingly attracts attention. In wireless sensor networks, the location of an event source may be subject to unintentional disclosure through traffic analysis by the attacker. In vehicular networks, authentication leaves a trail to tie a driver to a sequence of time and space coordinates. In a cloud-based navigation system, the location information of a sensitive itinerary is disclosed. Those scenarios have shown that privacy protection is a far-reaching problem that could span many different aspects of a computer/network system, especially on a diversified landscape of such systems. To address privacy protection, we propose to look at the issue from three aspects. First, traffic analysis represents one class of problems. This is because in general, encryption can be applied to protect the information being transmitted but the pattern of transmission is harder to hide due to other constraints. To defeat traffic analysis, it is necessary to identify those constraints and decide the trade-off between them and privacy protection. We have shown that the threat to the source location privacy within a sensor network is directly related with the pattern of the routing protocol. Thus to completely remove that pattern, we propose to use a random walk to defeat the threat. Second, authentication is generally required to establish the identities of interacting parties in an electronical communication. But it unnecessarily reveals other private information when it is applied to a vehicular network. We propose to introduce tunable anonymity, through both asymmetric and symmetric encryption primitives, into the authentication process so that it provides kk-anonymity. We further extend the scenario to mobile scenarios. At last, it is often perceived that private information has to be shared in order to obtain certain services. For example, source location and destination location have to be sent for looking up the shortest path between them. We show that it is possible to apply private information retrieval so that a service provider knows for whom it has provided service for accounting purposes, but not the details of the service. In general, the three aspects represent some basic aspects of privacy issues arising from using computer/network systems. Our approaches, while innovative for the scenarios discussed at hand, are general enough to be applied to similar scenarios

    Cyberphysical Constructs and Concepts for Fully Automated Networked Vehicles

    Get PDF
    Human lives are at stake in networked systems of automated vehicles. Drawing from mature domains where life/safety critical cyberphysical systems have already been deployed as well as from various scientific disciplines, we introduce the SPEC (Safety, Privacy, Efficiency, Cybersecurity) problem which arises in self-organizing and self-healing networks of fully automated terrestrial vehicles, and CMX functionalities intended for vehicular onboard systems. CM stands for Coordinated Mobility, X stands for S, P, E and C. The CMX framework encompasses cyberphysical constructs (cells, cohorts) endowed with proven properties, onboard proactive security modules, unfalsifiable cyberphysical levels, protocols and distributed algorithms for timed-bounded inter-vehicular communications, reliable message dissemination, trusted explicit agreements/coordination, and privacy preserving options that insulate passengers from illegitimate internal cyber-surveillance and external eavesdropping and tracking. We establish inter alia that safety and privacy can be obtained jointly, by design. The focus of this report is on SE properties. Notably, we show how to achieve theoretical absolute safety (0 fatalities and 0 severe injuries in rear-end collisions and pileups) and highest efficiency (smallest safe inter-vehicular gaps) jointly, by design, in spontaneous cohorts of vehicles. Results conveyed in this report shall open new opportunities for innovative research and development of high societal impact.Les vies humaines sont en jeu dans les réseaux de véhicules automatisés, à l’instar de domaines matures où des systèmes critiques en matière de sécurité-innocuité ont déjà été déployés. Les connaissances acquises dans ces domaines ainsi que dans diverses disciplines scientifiques permettent de définir le problème SPEC (Safety, Privacy, Efficiency, Cybersecurity) qui se pose dans les réseaux auto-organisés et auto-réparateurs de véhicules terrestres à conduite entièrement automatisée. On introduit CMX, un ensemble de fonctionnalités destinées aux systèmes bord. CM est l’abréviation de Coordinated Mobility, et X signifie S, P, E et C. L’ensemble CMX repose sur des constructions cyberphysiques (cellules, cohortes) dotées de propriétés prouvées, les concepts de module de sécurité proactif et de niveaux cyberphysiques infalsifiables, des protocoles et des algorithmes distribués pour communications inter-véhiculaires en temps borné, dissémination fiable de messages, coordination et accords explicites dignes de confiance, ainsi que sur des options de protection de la vie privée qui permettent aux passagers d’interdire la cyber-surveillance illégitime interne et externe (écoutes radio et pistage des trajets). On établit qu’il est possible de garantir conjointement sécurité-innocuité (safety) et respect de la vie privée (privacy), par conception. Ce rapport est consacré aux propriétés SE. En particulier, on montre comment obtenir la sécurité-innocuité absolue théorique (taux nul de mortalité et de graves blessures en cas de collisions longitudinales) et maximiser l’efficacité (espaces inter-véhiculaires minimaux) conjointement, par conception, dans les cohortes spontanées de véhicules. Les résultats contenus dans ce rapport devraient ouvrir de nouvelles perspectives de recherche et développement à fort impact sociétal
    corecore