1,131 research outputs found

    Copula-based models for multivariate discrete response data

    Get PDF

    A multinomial quadrivariate D-vine copula mixed model for meta-analysis of diagnostic studies in the presence of non-evaluable subjects

    Get PDF
    Diagnostic test accuracy studies observe the result of a gold standard procedure that defines the presence or absence of a disease and the result of a diagnostic test. They typically report the number of true positives, false positives, true negatives and false negatives. However, diagnostic test outcomes can also be either non-evaluable positives or non-evaluable negatives. We propose a novel model for the meta-analysis of diagnostic studies in the presence of non-evaluable outcomes, which assumes independent multinomial distributions for the true and non-evaluable positives, and, the true and non-evaluable negatives, conditional on the latent sensitivity, specificity, probability of non-evaluable positives and probability of non-evaluable negatives in each study. For the random effects distribution of the latent proportions, we employ a drawable vine copula that can successively model the dependence in the joint tails. Our methodology is demonstrated with an extensive simulation study and applied to data from diagnostic accuracy studies of coronary computed tomography angiography for the detection of coronary artery disease. The comparison of our method with the existing approaches yields findings in the real data application that change the current conclusions

    A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution

    Get PDF
    Diagnostic test accuracy studies typically report the number of true positives, false positives, true negatives and false negatives. There usually exists a negative association between the number of true positives and true negatives, because studies that adopt less stringent criterion for declaring a test positive invoke higher sensitivities and lower specificities. A generalized linear mixed model (GLMM) is currently recommended to synthesize diagnostic test accuracy studies. We propose a copula mixed model for bivariate meta-analysis of diagnostic test accuracy studies. Our general model includes the GLMM as a special case and can also operate on the original scale of sensitivity and specificity. Summary receiver operating characteristic curves are deduced for the proposed model through quantile regression techniques and different characterizations of the bivariate random effects distribution. Our general methodology is demonstrated with an extensive simulation study and illustrated by re-analysing the data of two published meta-analyses. Our study suggests that there can be an improvement on GLMM in fit to data and makes the argument for moving to copula random effects models. Our modelling framework is implemented in the package CopulaREMADA within the open source statistical environment R

    A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence

    Get PDF
    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality

    Hybrid copula mixed models for combining case-control and cohort studies in meta-analysis of diagnostic tests

    Get PDF
    Copula mixed models for trivariate (or bivariate) meta-analysis of diagnostic test accuracy studies accounting (or not) for disease prevalence have been proposed in the biostatistics literature to synthesize information. However, many systematic reviews often include case-control and cohort studies, so one can either focus on the bivariate meta-analysis of the case-control studies or the trivariate meta-analysis of the cohort studies, as only the latter contains information on disease prevalence. In order to remedy this situation of wasting data we propose a hybrid copula mixed model via a combination of the bivariate and trivariate copula mixed model for the data from the case-control studies and cohort studies, respectively. Hence, this hybrid model can account for study design and also due to its generality can deal with dependence in the joint tails. We apply the proposed hybrid copula mixed model to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years
    • …
    corecore