28,312 research outputs found

    Deep Neuroevolution of Recurrent and Discrete World Models

    Get PDF
    Neural architectures inspired by our own human cognitive system, such as the recently introduced world models, have been shown to outperform traditional deep reinforcement learning (RL) methods in a variety of different domains. Instead of the relatively simple architectures employed in most RL experiments, world models rely on multiple different neural components that are responsible for visual information processing, memory, and decision-making. However, so far the components of these models have to be trained separately and through a variety of specialized training methods. This paper demonstrates the surprising finding that models with the same precise parts can be instead efficiently trained end-to-end through a genetic algorithm (GA), reaching a comparable performance to the original world model by solving a challenging car racing task. An analysis of the evolved visual and memory system indicates that they include a similar effective representation to the system trained through gradient descent. Additionally, in contrast to gradient descent methods that struggle with discrete variables, GAs also work directly with such representations, opening up opportunities for classical planning in latent space. This paper adds additional evidence on the effectiveness of deep neuroevolution for tasks that require the intricate orchestration of multiple components in complex heterogeneous architectures

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    corecore