4,200 research outputs found

    Product-based Neural Networks for User Response Prediction

    Full text link
    Predicting user responses, such as clicks and conversions, is of great importance and has found its usage in many Web applications including recommender systems, web search and online advertising. The data in those applications is mostly categorical and contains multiple fields; a typical representation is to transform it into a high-dimensional sparse binary feature representation via one-hot encoding. Facing with the extreme sparsity, traditional models may limit their capacity of mining shallow patterns from the data, i.e. low-order feature combinations. Deep models like deep neural networks, on the other hand, cannot be directly applied for the high-dimensional input because of the huge feature space. In this paper, we propose a Product-based Neural Networks (PNN) with an embedding layer to learn a distributed representation of the categorical data, a product layer to capture interactive patterns between inter-field categories, and further fully connected layers to explore high-order feature interactions. Our experimental results on two large-scale real-world ad click datasets demonstrate that PNNs consistently outperform the state-of-the-art models on various metrics.Comment: 6 pages, 5 figures, ICDM201

    Bidirectional branch and bound for controlled variable selection. Part III: local average loss minimization

    Get PDF
    The selection of controlled variables (CVs) from available measurements through exhaustive search is computationally forbidding for large-scale processes. We have recently proposed novel bidirectional branch and bound (B-3) approaches for CV selection using the minimum singular value (MSV) rule and the local worst- case loss criterion in the framework of self-optimizing control. However, the MSV rule is approximate and worst-case scenario may not occur frequently in practice. Thus, CV selection by minimizing local average loss can be deemed as most reliable. In this work, the B-3 approach is extended to CV selection based on local average loss metric. Lower bounds on local average loss and, fast pruning and branching algorithms are derived for the efficient B-3 algorithm. Random matrices and binary distillation column case study are used to demonstrate the computational efficiency of the proposed method
    • …
    corecore