298 research outputs found

    Wireless Sensors for Health Monitoring of Marine Structures and Machinery

    Get PDF
    Remote structural and machinery health monitoring (SMHM) of marine structures such as ships, oil and gas rigs, freight container terminals, and marine energy platforms can ensure their reliability. However, the wired sensors currently used in these applications are difficult and expensive to install and maintain. Wireless Sensor Networks (WSN) can potentially replace them but there are significant capability gaps that currently prevent their long-term deployment in the harsh marine environment and the structurally-complex, compartmentalised, all-metal scenarios with high volume occupancy of piping, ducting and operational machinery represented by marine structures. These gaps are in sensing, processing and communication hardware and firmware capabilities, reduction of power consumption, hardware assembly and packaging for reliability in the marine environment, reliability of wireless connectivity in the complex metal structures, and software for WSN deployment planning in the marine environment. Taken together, these gaps highlight the need for a systems integration methodology for marine SMHM and this is the focus of the research presented in this thesis. The research takes an applied approach by first designing the hardware and firmware for two wireless sensing modules specifically for marine SMHM, one a novel eddy-current-based 3D module for measuring multi-axis metal structural displacement, the second a fully integrated module for monitoring of structure and machinery reliability. The research then addresses module assembly and packaging methods to ensure reliability in the marine environment, the development of an efficient methodology for characterising the reliability of wireless connectivity in complex metal structures, and development of user interface software for planning WSN deployment and for managing the collection of WSN data. These are then individually and collectively characterised and tested for performance and reliability in laboratory, land-based and marine deployments. In addition to the research outcomes in each of these individual aspects, the overall research outcome represents a systems integration methodology that now allows deployment, with a high expectation of reliability of marine SMHM WSNs

    The Open Source DataTurbine Initiative: Streaming Data Middleware for Environmental Observing Systems

    Get PDF
    The Open Source DataTurbine Initiative is an international community of scientists and engineers sharing a common interest in real-time streaming data middleware and applications. The technology base of the OSDT Initiative is the DataTurbine open source middleware. Key applications of DataTurbine include coral reef monitoring, lake monitoring and limnology, biodiversity and animal tracking, structural health monitoring and earthquake engineering, airborne environmental monitoring, and environmental sustainability. DataTurbine software emerged as a commercial product in the 1990 s from collaborations between NASA and private industry. In October 2007, a grant from the USA National Science Foundation (NSF) Office of Cyberinfrastructure allowed us to transition DataTurbine from a proprietary software product into an open source software initiative. This paper describes the DataTurbine software and highlights key applications in environmental monitoring

    Research Naval Postgraduate School, v.12, no.3, October 2002

    Get PDF
    NPS Research is published by the Research and Sponsored Programs, Office of the Vice President and Dean of Research, in accordance with NAVSOP-35. Views and opinions expressed are not necessarily those of the Department of the Navy.Approved for public release; distribution is unlimited

    The Future 5G Network-Based Secondary Load Frequency Control in Shipboard Microgrids

    Get PDF

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    Computing, information, and communications: Technologies for the 21. Century

    Full text link

    Preliminary systems engineering evaluations for the National Ecological Observatory Network.

    Full text link
    corecore