1,465 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Audio-visual speech processing system for Polish applicable to human-computer interaction

    Get PDF
    This paper describes audio-visual speech recognition system for Polish language and a set of performance tests under various acoustic conditions. We first present the overall structure of AVASR systems with three main areas: audio features extraction, visual features extraction and subsequently, audiovisual speech integration. We present MFCC features for audio stream with standard HMM modeling technique, then we describe appearance and shape based visual features. Subsequently we present two feature integration techniques, feature concatenation and model fusion. We also discuss the results of a set of experiments conducted to select best system setup for Polish, under noisy audio conditions. Experiments are simulating human-computer interaction in computer control case with voice commands in difficult audio environments. With Active Appearance Model (AAM) and multistream Hidden Markov Model (HMM) we can improve system accuracy by reducing Word Error Rate for more than 30%, comparing to audio-only speech recognition, when Signal-to-Noise Ratio goes down to 0dB

    Generalized multi-stream hidden Markov models.

    Get PDF
    For complex classification systems, data is usually gathered from multiple sources of information that have varying degree of reliability. In fact, assuming that the different sources have the same relevance in describing all the data might lead to an erroneous behavior. The classification error accumulates and can be more severe for temporal data where each sample is represented by a sequence of observations. Thus, there is compelling evidence that learning algorithms should include a relevance weight for each source of information (stream) as a parameter that needs to be learned. In this dissertation, we assumed that the multi-stream temporal data is generated by independent and synchronous streams. Using this assumption, we develop, implement, and test multi- stream continuous and discrete hidden Markov model (HMM) algorithms. For the discrete case, we propose two new approaches to generalize the baseline discrete HMM. The first one combines unsupervised learning, feature discrimination, standard discrete HMMs and weighted distances to learn the codebook with feature-dependent weights for each symbol. The second approach consists of modifying the HMM structure to include stream relevance weights, generalizing the standard discrete Baum-Welch learning algorithm, and deriving the necessary conditions to optimize all model parameters simultaneously. We also generalize the minimum classification error (MCE) discriminative training algorithm to include stream relevance weights. For the continuous HMM, we introduce a. new approach that integrates the stream relevance weights in the objective function. Our approach is based on the linearization of the probability density function. Two variations are proposed: the mixture and state level variations. As in the discrete case, we generalize the continuous Baum-Welch learning algorithm to accommodate these changes, and we derive the necessary conditions for updating the model parameters. We also generalize the MCE learning algorithm to derive the necessary conditions for the model parameters\u27 update. The proposed discrete and continuous HMM are tested on synthetic data sets. They are also validated on various applications including Australian Sign Language, audio classification, face classification, and more extensively on the problem of landmine detection using ground penetrating radar data. For all applications, we show that considerable improvement can be achieved compared to the baseline HMM and the existing multi-stream HMM algorithms

    ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ DNN ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€๋‚จ์ˆ˜.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•ด์„œ DNN์„ ํ™œ์šฉํ•œ ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” DNN์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์žก์Œ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ๊ฐ•์ธํ•จ์„ ๋ณด์กฐ ํŠน์ง• ๋ฒกํ„ฐ๋“ค์„ ํ†ตํ•˜์—ฌ ์ตœ๋Œ€๋กœ ํ™œ์šฉํ•˜๋Š” ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ DNN์€ ์™œ๊ณก๋œ ์Œ์„ฑ, ๊นจ๋—ํ•œ ์Œ์„ฑ, ์žก์Œ ์ถ”์ •์น˜, ๊ทธ๋ฆฌ๊ณ  ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ๋ณด๋‹ค ์›ํ™œํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๊ธฐ๋ฒ•์€ Aurora-5 DB ์—์„œ ๊ธฐ์กด์˜ ๋ณด์กฐ ์žก์Œ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ชจ๋ธ ์ ์‘ ๊ธฐ๋ฒ•์ธ ์žก์Œ ์ธ์ง€ ํ•™์Šต (noise-aware training, NAT) ๊ธฐ๋ฒ•์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” DNN์„ ํ™œ์šฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ธฐ์กด์˜ ๋‹ค ์ฑ„๋„ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ „ํ†ต์ ์ธ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์ธ ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ํ–ฅ์ƒ๋œ ๋‹จ์ผ ์†Œ์Šค ์Œ์„ฑ ์‹ ํ˜ธ๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๊ทธ๋ฅผ ํ†ตํ•˜์—ฌ ์Œ์„ฑ์ธ์‹์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ธฐ์กด์˜ ๋น”ํฌ๋ฐ ์ค‘์—์„œ ๊ฐ€์žฅ ๊ธฐ๋ณธ์  ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ delay-and-sum (DS) ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•๊ณผ DNN์„ ๊ฒฐํ•ฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” DNN์€ ์ค‘๊ฐ„ ๋‹จ๊ณ„ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๋™ ํ•™์Šต ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์™œ๊ณก๋œ ๋‹ค ์ฑ„๋„ ์ž…๋ ฅ ์Œ์„ฑ ์‹ ํ˜ธ๋“ค๊ณผ ๊นจ๋—ํ•œ ์Œ์„ฑ ์‹ ํ˜ธ์™€์˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ multichannel wall street journal audio visual (MC-WSJAV) corpus์—์„œ์˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ, ๊ธฐ์กด์˜ ๋‹ค์ฑ„๋„ ํ–ฅ์ƒ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ถˆํ™•์ •์„ฑ ์ธ์ง€ ํ•™์Šต (Uncertainty-aware training, UAT) ๊ธฐ๋ฒ•์ด๋‹ค. ์œ„์—์„œ ์†Œ๊ฐœ๋œ ๊ธฐ๋ฒ•๋“ค์„ ํฌํ•จํ•˜์—ฌ ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์€ ๊ฐ๊ฐ์˜ ๋„คํŠธ์›Œํฌ์˜ ํƒ€๊ฒŸ์„ ์ถ”์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ๊ฒฐ์ •๋ก ์ ์ธ ์ถ”์ • ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ์ถ”์ •์น˜์˜ ๋ถˆํ™•์ •์„ฑ ๋ฌธ์ œ ํ˜น์€ ์‹ ๋ขฐ๋„ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” UAT ๊ธฐ๋ฒ•์€ ํ™•๋ฅ ๋ก ์ ์ธ ๋ณ€ํ™” ์ถ”์ •์„ ํ•™์Šตํ•˜๊ณ  ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ์ธ ๋ณ€ํ™” ์˜คํ† ์ธ์ฝ”๋” (variational autoencoder, VAE) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. UAT๋Š” ์™œ๊ณก๋œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ์™€ ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๋งค๊ฐœํ•˜๋Š” ๊ฐ•์ธํ•œ ์€๋‹‰ ๋ณ€์ˆ˜๋ฅผ ๊นจ๋—ํ•œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ •์น˜์˜ ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค. UAT์˜ ์€๋‹‰ ๋ณ€์ˆ˜๋“ค์€ ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ์— ์ตœ์ ํ™”๋œ uncertainty decoding (UD) ํ”„๋ ˆ์ž„์›Œํฌ๋กœ๋ถ€ํ„ฐ ์œ ๋„๋œ ์ตœ๋Œ€ ์šฐ๋„ ๊ธฐ์ค€์— ๋”ฐ๋ผ์„œ ํ•™์Šต๋œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ Aurora-4 DB์™€ CHiME-4 DB์—์„œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.In this thesis, we propose three acoustic modeling techniques for robust automatic speech recognition (ASR). Firstly, we propose a DNN-based acoustic modeling technique which makes the best use of the inherent noise-robustness of DNN is proposed. By applying this technique, the DNN can automatically learn the complicated relationship among the noisy, clean speech and noise estimate to phonetic target smoothly. The proposed method outperformed noise-aware training (NAT), i.e., the conventional auxiliary-feature-based model adaptation technique in Aurora-5 DB. The second method is multi-channel feature enhancement technique. In the general multi-channel speech recognition scenario, the enhanced single speech signal source is extracted from the multiple inputs using beamforming, i.e., the conventional signal-processing-based technique and the speech recognition process is performed by feeding that source into the acoustic model. We propose the multi-channel feature enhancement DNN algorithm by properly combining the delay-and-sum (DS) beamformer, which is one of the conventional beamforming techniques and DNN. Through the experiments using multichannel wall street journal audio visual (MC-WSJ-AV) corpus, it has been shown that the proposed method outperformed the conventional multi-channel feature enhancement techniques. Finally, uncertainty-aware training (UAT) technique is proposed. The most of the existing DNN-based techniques including the techniques introduced above, aim to optimize the point estimates of the targets (e.g., clean features, and acoustic model parameters). This tampers with the reliability of the estimates. In order to overcome this issue, UAT employs a modified structure of variational autoencoder (VAE), a neural network model which learns and performs stochastic variational inference (VIF). UAT models the robust latent variables which intervene the mapping between the noisy observed features and the phonetic target using the distributive information of the clean feature estimates. The proposed technique outperforms the conventional DNN-based techniques on Aurora-4 and CHiME-4 databases.Abstract i Contents iv List of Figures ix List of Tables xiii 1 Introduction 1 2 Background 9 2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Experimental Database . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Aurora-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Aurora-5 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 MC-WSJ-AV DB . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 CHiME-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Two-stage Noise-aware Training for Environment-robust Speech Recognition 25 iii 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Noise-aware Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Two-stage NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Upper DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.3 Joint Training . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 GMM-HMM System . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Training and Structures of DNN-based Techniques . . . . . . 37 3.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 40 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 DNN-based Feature Enhancement for Robust Multichannel Speech Recognition 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Observation Model in Multi-Channel Reverberant Noisy Environment 49 4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Upper DNN and Joint Training . . . . . . . . . . . . . . . . . 54 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Recognition System and Feature Extraction . . . . . . . . . . 56 4.4.2 Training and Structures of DNN-based Techniques . . . . . . 58 4.4.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 62 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 iv 5 Uncertainty-aware Training for DNN-HMM System using Varia- tional Inference 67 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Uncertainty Decoding for Noise Robustness . . . . . . . . . . . . . . 72 5.3 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 VIF-based uncertainty-aware Training . . . . . . . . . . . . . . . . . 83 5.4.1 Clean Uncertainty Network . . . . . . . . . . . . . . . . . . . 91 5.4.2 Environment Uncertainty Network . . . . . . . . . . . . . . . 93 5.4.3 Prediction Network and Joint Training . . . . . . . . . . . . . 95 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.1 Experimental Setup: Feature Extraction and ASR System . . 96 5.5.2 Network Structures . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5.3 Eects of CUN on the Noise Robustness . . . . . . . . . . . . 104 5.5.4 Uncertainty Representation in Dierent SNR Condition . . . 105 5.5.5 Result of Speech Recognition . . . . . . . . . . . . . . . . . . 112 5.5.6 Result of Speech Recognition with LSTM-HMM . . . . . . . 114 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 Conclusions 127 Bibliography 131 ์š”์•ฝ 145Docto
    • โ€ฆ
    corecore