31,333 research outputs found

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Information access tasks and evaluation for personal lifelogs

    Get PDF
    Emerging personal lifelog (PL) collections contain permanent digital records of information associated with individuals’ daily lives. This can include materials such as emails received and sent, web content and other documents with which they have interacted, photographs, videos and music experienced passively or created, logs of phone calls and text messages, and also personal and contextual data such as location (e.g. via GPS sensors), persons and objects present (e.g. via Bluetooth) and physiological state (e.g. via biometric sensors). PLs can be collected by individuals over very extended periods, potentially running to many years. Such archives have many potential applications including helping individuals recover partial forgotten information, sharing experiences with friends or family, telling the story of one’s life, clinical applications for the memory impaired, and fundamental psychological investigations of memory. The Centre for Digital Video Processing (CDVP) at Dublin City University is currently engaged in the collection and exploration of applications of large PLs. We are collecting rich archives of daily life including textual and visual materials, and contextual context data. An important part of this work is to consider how the effectiveness of our ideas can be measured in terms of metrics and experimental design. While these studies have considerable similarity with traditional evaluation activities in areas such as information retrieval and summarization, the characteristics of PLs mean that new challenges and questions emerge. We are currently exploring the issues through a series of pilot studies and questionnaires. Our initial results indicate that there are many research questions to be explored and that the relationships between personal memory, context and content for these tasks is complex and fascinating

    A new method of correcting uneven illumination problem in fundus images

    Get PDF
    Recent advancements in signal and image processing have reduced the time of diagnoses, effort and pressure on the screeners by providing auto diagnostic tools for different diseases. The success rate of these tools greatly depend on the quality of acquired images. Bad image quality can significantly reduce the specificity and the sensitivity which in turn forces screeners back to their tedious job of manual diagnoses. In acquired fundus images, some areas appear to be brighter than the other, that is areas close to the center of the image are always well illuminated, hence appear very bright while areas far from the center are poorly illuminated hence appears to be very dark. Several techniques including the simple thresholding, Naka Rushton (NR) filtering technique and histogram equalization (HE) method have been suggested by various researchers to overcome this problem. However, each of these methods has limitations at their own and hence the need to develop a more robust technique that will provide better performance with greater flexibility. A new method of compensating uneven (irregular) illumination in fundus images termed global-local adaptive histogram equalization using partially-overlapped windows (GLAPOW) is proposed in this paper. The developed algorithm has been tested and the results obtained show superior performance when compared to other known techniques for uneven illumination correction

    A new method of correcting uneven illumination problem in fundus image

    Get PDF
    Recent advancements in signal and image processing have reduced the time of diagnoses, effort and pressure on the screeners by providing auto diagnostic tools for different diseases. The success rate of these tools greatly depend on the quality of acquired images. Bad image quality can significantly reduce the specificity and the sensitivity which in turn forces screeners back to their tedious job of manual diagnoses. In acquired fundus images, some areas appear to be brighter than the other, that is areas close to the center of the image are always well illuminated, hence appear very bright while areas far from the center are poorly illuminated hence appears to be very dark. Several techniques including the simple thresholding, Naka Rushton (NR) filtering technique and histogram equalization (HE) method have been suggested by various researchers to overcome this problem. However, each of these methods has limitations at their own and hence the need to develop a more robust technique that will provide better performance with greater flexibility. A new method of compensating uneven (irregular) illumination in fundus images termed global-local adaptive histogram equalization using partially-overlapped windows (GLAPOW) is proposed in this paper. The developed algorithm has been tested and the results obtained show superior performance when compared to other known techniques for uneven illumination correction
    corecore