39 research outputs found

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Efficient Construction for Full Black-Box Accountable Authority Identity-Based Encryption

    Get PDF
    Accountable authority identity-based encryption (A-IBE), as an attractive way to guarantee the user privacy security, enables a malicious private key generator (PKG) to be traced if it generates and re-distributes a user private key. Particularly, an A-IBE scheme achieves full black-box security if it can further trace a decoder box and is secure against a malicious PKG who can access the user decryption results. In PKC\u2711, Sahai and Seyalioglu presented a generic construction for full black-box A-IBE from a primitive called dummy identity-based encryption, which is a hybrid between IBE and attribute-based encryption (ABE). However, as the complexity of ABE, their construction is inefficient and the size of private keys and ciphertexts in their instantiation is linear in the length of user identity. In this paper, we present a new efficient generic construction for full black-box A-IBE from a new primitive called token-based identity-based encryption (TB-IBE), without using ABE. We first formalize the definition and security model for TB-IBE. Subsequently, we show that a TB-IBE scheme satisfying some properties can be converted to a full black-box A-IBE scheme, which is as efficient as the underlying TB-IBE scheme in terms of computational complexity and parameter sizes. Finally, we give an instantiation with the computational complexity as O(1) and the constant size master key pair, private keys, and ciphertexts

    Ensuring Accountability and Outsourced Decryption in IoT Systems using Ciphertext-Policy Attribute-Based Encryption

    Get PDF
    Attribute based cryptography enhances the chances of secure communication on large scale. There are several features of attribute based encryption which have been proposed as different protocols. Most of these are suitable for access control in large systems like cloud services. Very few protocols focus on reducing the computational overhead for lower end devices like Internet of Things sensors and actuators. Hence, it is desirable to have a mix of features in protocols for IoT architecture. Our protocol enforces accountability of different parties involved while reducing the computational overhead during decryption on miniature devices. We prove that our protocol is RCCA-secure in selective security model and achieve accountability and unlinkability

    Blockchain-based multi-authority revocable data sharing scheme in smart grid

    Get PDF
    In view of the problems of inefficient data encryption, non-support of malicious user revocation and data integrity checking in current smart grid data sharing schemes, this paper proposes a blockchain-based multi-authority revocable data sharing scheme in the smart grid. Using online/offline encryption technology with hybrid encryption technology enhances the encryption performance for the data owner. The use of user binary tree technology enables the traceability and revocability of malicious users. The introduction of multiple attribute authorization authorities eliminates the threat of collusive attacks that exist in traditional data-sharing schemes. In addition, the semi-honest problem of third-party servers is solved by uploading data verification credentials to the blockchain. The security analysis results show that the scheme can resist selective plaintext attacks and collusion attacks. The performance analysis results show that the proposed scheme has lower computational overhead and better functionality than similar schemes, which is suitable for secure data sharing in smart grids

    Enabling Data Confidentiality with Public Blockchains

    Full text link
    Blockchain technology is apt to facilitate the automation of multi-party cooperations among various players in a decentralized setting, especially in cases where trust among participants is limited. Transactions are stored in a ledger, a replica of which is retained by every node of the blockchain network. The operations saved thereby are thus publicly accessible. While this aspect enhances transparency, reliability, and persistence, it hinders the utilization of public blockchains for process automation as it violates typical confidentiality requirements in corporate settings. To overcome this issue, we propose our approach named Multi-Authority Approach to Transaction Systems for Interoperating Applications (MARTSIA). Based on Multi-Authority Attribute-Based Encryption (MA-ABE), MARTSIA enables read-access control over shared data at the level of message parts. User-defined policies determine whether an actor can interpret the publicly stored information or not, depending on the actor's attributes declared by a consortium of certifiers. Still, all nodes in the blockchain network can attest to the publication of the (encrypted) data. We provide a formal analysis of the security guarantees of MARTSIA, and illustrate the proof-of-concept implementation over multiple blockchain platforms. To demonstrate its interoperability, we showcase its usage in ensemble with a state-of-the-art blockchain-based engine for multi-party process execution, and three real-world decentralized applications in the context of NFT markets, supply chain, and retail.Comment: arXiv admin note: substantial text overlap with arXiv:2303.1797

    Conditional Ciphertext-Policy Attribute-Based Encryption Scheme in Vehicular Cloud Computing

    Get PDF

    Lightweight sharable and traceable secure mobile health system

    Get PDF
    National Research Foundation (NRF) Singapor

    Data Sharing on Untrusted Storage with Attribute-Based Encryption

    Get PDF
    Storing data on untrusted storage makes secure data sharing a challenge issue. On one hand, data access policies should be enforced on these storage servers; on the other hand, confidentiality of sensitive data should be well protected against them. Cryptographic methods are usually applied to address this issue -- only encrypted data are stored on storage servers while retaining secret key(s) to the data owner herself; user access is granted by issuing the corresponding data decryption keys. The main challenges for cryptographic methods include simultaneously achieving system scalability and fine-grained data access control, efficient key/user management, user accountability and etc. To address these challenge issues, this dissertation studies and enhances a novel public-key cryptography -- attribute-based encryption (ABE), and applies it for fine-grained data access control on untrusted storage. The first part of this dissertation discusses the necessity of applying ABE to secure data sharing on untrusted storage and addresses several security issues for ABE. More specifically, we propose three enhancement schemes for ABE: In the first enhancement scheme, we focus on how to revoke users in ABE with the help of untrusted servers. In this work, we enable the data owner to delegate most computation-intensive tasks pertained to user revocation to untrusted servers without disclosing data content to them. In the second enhancement scheme, we address key abuse attacks in ABE, in which authorized but malicious users abuse their access privileges by sharing their decryption keys with unauthorized users. Our proposed scheme makes it possible for the data owner to efficiently disclose the original key owner\u27s identity merely by checking the input and output of a suspicious user\u27s decryption device. Our third enhancement schemes study the issue of privacy preservation in ABE. Specifically, our proposed schemes hide the data owner\u27s access policy not only to the untrusted servers but also to all the users. The second part presents our ABE-based secure data sharing solutions for two specific applications -- Cloud Computing and Wireless Sensor Networks (WSNs). In Cloud Computing cloud servers are usually operated by third-party providers, which are almost certain to be outside the trust domain of cloud users. To secure data storage and sharing for cloud users, our proposed scheme lets the data owner (also a cloud user) generate her own ABE keys for data encryption and take the full control on key distribution/revocation. The main challenge in this work is to make the computation load affordable to the data owner and data consumers (both are cloud users). We address this challenge by uniquely combining various computation delegation techniques with ABE and allow both the data owner and data consumers to securely mitigate most computation-intensive tasks to cloud servers which are envisaged to have unlimited resources. In WSNs, wireless sensor nodes are often unattendedly deployed in the field and vulnerable to strong attacks such as memory breach. For securing storage and sharing of data on distributed storage sensor nodes while retaining data confidentiality, sensor nodes encrypt their collected data using ABE public keys and store encrypted data on storage nodes. Authorized users are given corresponding decryption keys to read data. The main challenge in this case is that sensor nodes are extremely resource-constrained and can just afford limited computation/communication load. Taking this into account we divide the lifetime of sensor nodes into phases and distribute the computation tasks into each phase. We also revised the original ABE scheme to make the overhead pertained to user revocation minimal for sensor nodes. Feasibility of the scheme is demonstrated by experiments on real sensor platforms

    Securing Fog Federation from Behavior of Rogue Nodes

    Get PDF
    As the technological revolution advanced information security evolved with an increased need for confidential data protection on the internet. Individuals and organizations typically prefer outsourcing their confidential data to the cloud for processing and storage. As promising as the cloud computing paradigm is, it creates challenges; everything from data security to time latency issues with data computation and delivery to end-users. In response to these challenges CISCO introduced the fog computing paradigm in 2012. The intent was to overcome issues such as time latency and communication overhead and to bring computing and storage resources close to the ground and the end-users. Fog computing was, however, considered an extension of cloud computing and as such, inherited the same security and privacy challenges encountered by traditional cloud computing. These challenges accelerated the research community\u27s efforts to find practical solutions. In this dissertation, we present three approaches for individual and organizational data security and protection while that data is in storage in fog nodes or in the cloud. We also consider the protection of these data while in transit between fog nodes and the cloud, and against rogue fog nodes, man-in-the-middle attacks, and curious cloud service providers. The techniques described successfully satisfy each of the main security objectives of confidentiality, integrity, and availability. Further we study the impact of rogue fog nodes on end-user devices. These approaches include a new concept, the Fog-Federation (FF): its purpose to minimize communication overhead and time latency between the Fog Nodes (FNs) and the Cloud Service Provider (CSP) during the time the system is unavailable as a rogue Fog Node (FN) is being ousted. Further, we considered the minimization of data in danger of breach by rogue fog nodes. We demonstrate the efficiency and feasibility of each approach by implementing simulations and analyzing security and performance
    corecore