2,522 research outputs found

    A Survey on Feature Analysis and Classification for Image Annotation using Saliency Map

    Get PDF
    With the advances in multimedia technologies collections of digital images is growing rapidly. Due to the popularity of various digital cameras and the rapid growth of social media tools, internet based photo sharing have increase in daily life. As the database have huge amount of images and other files, it is difficult to retrieve the required images. Supervised dictionary learning feature based image retrieval is very important area of research in the field of image retrieval. The feature based image annotation paradigm aims to tackle the automated image annotation by exploiting feature based image retrieval. Aim of this research work is to extract features related to the image in the form of annotation and develop system for clustering of data user define clusters with the help of image processing. To solve the problem of data classification into large dataset, to get an efficient system which classify data not only on basis of the dataset but also on basis of the image specified class

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation

    Full text link
    Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.Comment: Submited to IEEE TI

    Multi-Label Learning for Semantic Image Annotation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore