2,203 research outputs found

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available

    Token-passing nets for functional languages

    Get PDF
    Proceedings of the 7th International Workshop on Reduction Strategies in Rewriting and Programming (WRS 2007)Token-passing nets were proposed by Sinot as a simple mechanism for encoding evaluation strategies for the λ-calculus in interaction nets. This work extends token-passing nets to cover a typed functional language equipped with structured types and unrestricted recursion. The resulting interaction system is derived systematically from the chosen big-step operational semantics. Along the way, we actually characterize and discuss several design decisions of token-passing nets and extend them in order to achieve simpler interaction net systems with a higher degree of embedded parallelism.Fundação para a Ciência e a Tecnologia (FCT

    The Dynamic Geometry of Interaction Machine: A Token-Guided Graph Rewriter

    Get PDF
    In implementing evaluation strategies of the lambda-calculus, both correctness and efficiency of implementation are valid concerns. While the notion of correctness is determined by the evaluation strategy, regarding efficiency there is a larger design space that can be explored, in particular the trade-off between space versus time efficiency. Aiming at a unified framework that would enable the study of this trade-off, we introduce an abstract machine, inspired by Girard's Geometry of Interaction (GoI), a machine combining token passing and graph rewriting. We show soundness and completeness of our abstract machine, called the \emph{Dynamic GoI Machine} (DGoIM), with respect to three evaluations: call-by-need, left-to-right call-by-value, and right-to-left call-by-value. Analysing time cost of its execution classifies the machine as ``efficient'' in Accattoli's taxonomy of abstract machines.Comment: arXiv admin note: text overlap with arXiv:1802.0649

    Integrated and Ecological Crop Protection (I/ECP)

    Get PDF
    Manual on integrated and ecological crop protectio
    • …
    corecore