353 research outputs found

    Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot

    Full text link
    The paper presents results of research on an inverse kinematics algorithm that has been used in a functional model of a cucumber-harvesting robot consisting of a redundant P6R manipulator. Within a first generic approach, the inverse kinematics problem was reformulated as a non-linear programming problem and solved with a Genetic Algorithm (GA). Although solutions were easily obtained, the considerable calculation time needed to solve the problem prevented on-line implementation. To circumvent this problem, a second, less generic, approach was developed which consisted of a mixed numerical-analytic solution of the inverse kinematics problem exploiting the particular structure of the P6R manipulator. Using the latter approach, calculation time was considerably reduced. During the early stages of the cucumber-harvesting project, this inverse kinematics algorithm was used off-line to evaluate the ability of the robot to harvest cucumbers using 3D-information obtained from a cucumber crop in a real greenhouse. Thereafter, the algorithm was employed successfully in a functional model of the cucumber harvester to determine if cucumbers were hanging within the reachable workspace of the robot and to determine a collision-free harvest posture to be used for motion control of the manipulator during harvesting. The inverse kinematics algorithm is presented and demonstrated with some illustrative examples of cucumber harvesting, both off-line during the design phase as well as on-line during a field test

    Multi-loop position analysis via iterated linear programming

    Get PDF
    Robotics: Science and Systems Conference (RSS), 2006, Filadelfia (EE.UU.)This paper presents a numerical method able to isolate all configurations that an arbitrary loop linkage can adopt, within given ranges for its degrees of freedom. The procedure is general, in the sense that it can be applied to single or multiple intermingled loops of arbitrary topology, and complete, in the sense that all possible solutions get accurately bounded, irrespectively of whether the analyzed linkage is rigid or mobile. The problem is tackled by formulating a system of linear, parabolic, and hyperbolic equations, which is here solved by a new strategy exploiting its structure. The method is conceptually simple, geometric in nature, and easy to implement, yet it provides solutions at the desired accuracy in short computation times.This work was supported by the project 'Planificador de trayectorias para sistemas robotizados de arquitectura arbitraria' (J-00930).Peer Reviewe

    Canonical Subproblems for Robot Inverse Kinematics

    Full text link
    The inverse kinematics (IK) problem for many common robot manipulators may be decomposed into canonical subproblems which are solved by finding the angles on circles where they intersect with other geometric objects. We present new algebraic solutions and geometric interpretations for six subproblems using a linear algebra approach, and we demonstrate significant computational performance improvements over existing IK methods. We show that IK for any 6-dof all revolute (6R) robot with three intersecting or parallel joint axes may be solved in closed form using subproblem decomposition. For any other 6R robot, subproblem decomposition reduces finding all IK solutions to a search over one or two joint angles. The first three subproblems, called the Paden-Kahan subproblems, are Subproblem 1: Circle and Point, Subproblem 2: Two Circles, and Subproblem 3: Circle and Sphere. The other three subproblems, which have not been extensively covered in the literature, are Subproblem 4: Circle and Plane, Subproblem 5: Three Circles, and Subproblem 6: Four Circles. Our approach also finds the least-squares solutions for Subproblems 1-4 when the exact solution does not exist.Comment: 14 pages, 8 figures. Updated with new solution methods and timing result

    Position analysis based on multi-affine formulations

    Get PDF
    Aplicat embargament des de la data de defensa fins el 31/5/2022The position analysis problem is a fundamental issue that underlies many problems in Robotics such as the inverse kinematics of serial robots, the forward kinematics of parallel robots, the coordinated manipulation of objects, the generation of valid grasps, the constraint-based object positioning, the simultaneous localization and map building, and the analysis of complex deployable structures. It also arises in other fields, such as in computer aided design, when the location of objects in a design is given in terms of geometric constrains, or in the conformational analysis of biomolecules. The ubiquity of this problem, has motivated an intense quest for methods able of tackling it. Up to now, efficient algorithms for the general problem have remained elusive and they are only available for particular cases. Moreover, the complexity of the problem has typically led to methods difficult to be implemented. Position analysis can be decomposed into two equally important steps: obtaining a set of closure equations, and solving them. This thesis deals with both of them to obtain a general, simple, and yet efficient solution method that we call the trapezoid method. The first step is addressed relying on dual quaternions. Although it has not been properly highlighted in the past, the use of dual quaternions permits expressing the closure condition of a kinematic loop involving only lower pairs as a system of multi-affine equations. In this thesis, this property is leveraged to introduce an interval-based method specially tailored for solving multi-affine systems. The proposed method is objectively simpler (in the sense that it is easier to understand and to implement) than previous methods based on general techniques such as interval Newton methods, conversions to Bernstein basis, or linear relaxations. Moreover, it relies on two simple operations, namely, linear interpolations and projections on coordinate planes, which can be executed with a high performance. The result is a method that accurately and efficiently bounds the valid solutions of the problem at hand. To further improve the accuracy, we propose the use of redundant, multi affine equations that are derived from the minimal set of equations describing the problem. To improve the efficiency, we introduce a variable elimination methodology that preserves the multi-affinity of the system of equations. The generality and the performance of the proposed trapezoid method are extensively evaluated on different kind of mechanisms, including spherical mechanisms, generic 6R and 7R loops, over-constrained systems, and multi-loop mechanisms. The proposed method is, in all cases, significantly faster than state of the art alternatives.El problema de l'anàlisi de posició és un tema fonamental que subjau a molts problemes de la robòtica, com ara la cinemàtica inversa de robots sèrie, la cinemàtica directa de robots paral·lels, la manipulació coordinada d'objectes, la generació de prensions vàlides amb mans robòtiques, el posicionament d'objectes basat en restriccions, la localització i la creació de mapes de forma simultània, i l'anàlisi d'estructures desplegables complexes. També sorgeix en altres camps, com ara en el disseny assistit per ordinador, quan la ubicació dels objectes en un disseny es dóna en termes de restriccions geomètriques o en l'anàlisi conformacional de biomolècules. La omnipresència d'aquest problema ha motivat una intensa recerca de mètodes capaços d'afrontar-lo. Fins al moment, els algoritmes eficients per al problema general han estat esquius i només estan disponibles per a casos particulars. A més, la complexitat del problema normalment ha conduït a mètodes difícils d'implementar. L'anàlisi de posició es pot descompondre en dos passos igualment importants: l'obtenció d'un sistema d'equacions de tancament i la resolució d'aquest sistema. Aquesta tesi tracta de tots dos passos per tal d'obtenir un mètode de solució general, senzill i alhora eficient que anomenem el mètode del trapezoide. El primer pas s'aborda utilitzant quaternions duals. Tot i que no ha estat suficientment destacat en el passat, l'ús de quaternions duals permet expressar la condició de tancament d'un bucle cinemàtic que impliqui només parells inferiors com a un sistema d'equacions multi-afins. En aquesta tesi s'aprofita aquesta propietat per introduir un mètode especialment dissenyat per resoldre sistemes multi-afins. El mètode proposat és objectivament més senzill (en el sentit que és més fàcil d'entendre i d'implementar) que els mètodes anteriors que utilitzen tècniques generals com ara els mètodes de Newton basats en intervals, les conversions a la base de Bernstein o les relaxacions lineals. A més, el mètode es basa en dues operacions simples, a saber, les interpolacions lineals i les projeccions en plans de coordenades, que es poden executar de forma molt eficient. El resultat és un mètode que acota amb precisió i eficiència les solucions vàlides del problema. Per millorar encara més la precisió, proposem l'ús d'equacions multi-afins redundants derivades del conjunt mínim d'equacions que descriuen el problema. Per altra banda, per millorar l'eficiència, introduïm un metodologia d'eliminació de variables que preserva la multi-afinitat del sistema d'equacions. La generalitat i el rendiment del mètode del trapezoide s'avalua extensivament en diferents tipus de mecanismes, inclosos els mecanismes esfèrics, bucles 6R i 7R genèrics, sistemes sobre-restringits i mecanismes de múltiples bucles. El mètode proposat és, en tots els casos, significativament més ràpid que els mètodes alternatius descrits en la literatura fins al moment.Postprint (published version

    Collision-free inverse kinematics of a 7 link cucumber picking robot

    Get PDF
    The paper presents results of research on inverse kinematics algorithms to be used in a functional model of a cucumber harvesting robot consisting of a redundant manipulator with one prismatic and six rotational joints (P6R). Within a first generic approach, the inverse kinematics problem was reformulated as a non-linear programming problem and solved with a generic algorithm. Solutions were easily obtained, but the considerable calculation time needed to solve the problem prevented on line implementation. To circumvent this problem, a second, less generic approach was developed consisting of a mixed numerical-analytic solution of the inverse kinematics problem exploiting the particular structure of the P6R manipulator. This approach facilitated rapid and robust calculation of the inverse kinematics of the cucumber harvester. During the early stages of the cucumber harvesting project, this inverse kinematics algorithm was used to off-line evaluate the ability of the robot to harvest cucumbers using 3D-information of a cucumber crop obtained in a real greenhouse. Thereafter, the algorithm was employed successfully in a functional model of the cucumber harvester to determine if cucumbers were hanging within the reachable workspace of the robot and to determine a collision-free harvest posture to be used for motion control of the manipulator during harvesting

    Investigation of cyclicity of kinematic resolution methods for serial and parallel planar manipulators

    Get PDF
    Kinematic redundancy of manipulators is a well-understood topic, and various methods were developed for the redundancy resolution in order to solve the inverse kinematics problem, at least for serial manipulators. An important question, with high practical relevance, is whether the inverse kinematics solution is cyclic, i.e., whether the redundancy solution leads to a closed path in joint space as a solution of a closed path in task space. This paper investigates the cyclicity property of two widely used redundancy resolution methods, namely the projected gradient method (PGM) and the augmented Jacobian method (AJM), by means of examples. Both methods determine solutions that minimize an objective function, and from an application point of view, the sensitivity of the methods on the initial configuration is crucial. Numerical results are reported for redundant serial robotic arms and for redundant parallel kinematic manipulators. While the AJM is known to be cyclic, it turns out that also the PGM exhibits cyclicity. However, only the PGM converges to the local optimum of the objective function when starting from an initial configuration of the cyclic trajector
    • …
    corecore