29 research outputs found

    List and Unique Error-Erasure Decoding of Interleaved Gabidulin Codes with Interpolation Techniques

    Full text link
    A new interpolation-based decoding principle for interleaved Gabidulin codes is presented. The approach consists of two steps: First, a multi-variate linearized polynomial is constructed which interpolates the coefficients of the received word and second, the roots of this polynomial have to be found. Due to the specific structure of the interpolation polynomial, both steps (interpolation and root-finding) can be accomplished by solving a linear system of equations. This decoding principle can be applied as a list decoding algorithm (where the list size is not necessarily bounded polynomially) as well as an efficient probabilistic unique decoding algorithm. For the unique decoder, we show a connection to known unique decoding approaches and give an upper bound on the failure probability. Finally, we generalize our approach to incorporate not only errors, but also row and column erasures.Comment: accepted for Designs, Codes and Cryptography; presented in part at WCC 2013, Bergen, Norwa

    Iterative List-Decoding of Gabidulin Codes via Gr\"obner Based Interpolation

    Full text link
    We show how Gabidulin codes can be list decoded by using an iterative parametrization approach. For a given received word, our decoding algorithm processes its entries one by one, constructing four polynomials at each step. This then yields a parametrization of interpolating solutions for the data so far. From the final result a list of all codewords that are closest to the received word with respect to the rank metric is obtained.Comment: Submitted to IEEE Information Theory Workshop 2014 in Hobart, Australi

    List-Decoding Gabidulin Codes via Interpolation and the Euclidean Algorithm

    Full text link
    We show how Gabidulin codes can be list decoded by using a parametrization approach. For this we consider a certain module in the ring of linearized polynomials and find a minimal basis for this module using the Euclidean algorithm with respect to composition of polynomials. For a given received word, our decoding algorithm computes a list of all codewords that are closest to the received word with respect to the rank metric.Comment: Submitted to ISITA 2014, IEICE copyright upon acceptanc

    List and Probabilistic Unique Decoding of Folded Subspace Codes

    Full text link
    A new class of folded subspace codes for noncoherent network coding is presented. The codes can correct insertions and deletions beyond the unique decoding radius for any code rate R∈[0,1]R\in[0,1]. An efficient interpolation-based decoding algorithm for this code construction is given which allows to correct insertions and deletions up to the normalized radius s(1−((1/h+h)/(h−s+1))R)s(1-((1/h+h)/(h-s+1))R), where hh is the folding parameter and s≤hs\leq h is a decoding parameter. The algorithm serves as a list decoder or as a probabilistic unique decoder that outputs a unique solution with high probability. An upper bound on the average list size of (folded) subspace codes and on the decoding failure probability is derived. A major benefit of the decoding scheme is that it enables probabilistic unique decoding up to the list decoding radius.Comment: 6 pages, 1 figure, accepted for ISIT 201

    Fast Decoding of Codes in the Rank, Subspace, and Sum-Rank Metric

    Get PDF
    We speed up existing decoding algorithms for three code classes in different metrics: interleaved Gabidulin codes in the rank metric, lifted interleaved Gabidulin codes in the subspace metric, and linearized Reed-Solomon codes in the sum-rank metric. The speed-ups are achieved by reducing the core of the underlying computational problems of the decoders to one common tool: computing left and right approximant bases of matrices over skew polynomial rings. To accomplish this, we describe a skew-analogue of the existing PM-Basis algorithm for matrices over usual polynomials. This captures the bulk of the work in multiplication of skew polynomials, and the complexity benefit comes from existing algorithms performing this faster than in classical quadratic complexity. The new faster algorithms for the various decoding-related computational problems are interesting in their own and have further applications, in particular parts of decoders of several other codes and foundational problems related to the remainder-evaluation of skew polynomials

    Row Reduction Applied to Decoding of Rank Metric and Subspace Codes

    Get PDF
    We show that decoding of ℓ\ell-Interleaved Gabidulin codes, as well as list-ℓ\ell decoding of Mahdavifar--Vardy codes can be performed by row reducing skew polynomial matrices. Inspired by row reduction of \F[x] matrices, we develop a general and flexible approach of transforming matrices over skew polynomial rings into a certain reduced form. We apply this to solve generalised shift register problems over skew polynomial rings which occur in decoding ℓ\ell-Interleaved Gabidulin codes. We obtain an algorithm with complexity O(ℓμ2)O(\ell \mu^2) where μ\mu measures the size of the input problem and is proportional to the code length nn in the case of decoding. Further, we show how to perform the interpolation step of list-ℓ\ell-decoding Mahdavifar--Vardy codes in complexity O(ℓn2)O(\ell n^2), where nn is the number of interpolation constraints.Comment: Accepted for Designs, Codes and Cryptograph

    Fast Decoding of Interleaved Linearized Reed-Solomon Codes and Variants

    Full text link
    We construct s-interleaved linearized Reed-Solomon (ILRS) codes and variants and propose efficient decoding schemes that can correct errors beyond the unique decoding radius in the sum-rank, sum-subspace and skew metric. The proposed interpolation-based scheme for ILRS codes can be used as a list decoder or as a probabilistic unique decoder that corrects errors of sum-rank up to t≤ss+1(n−k)t\leq\frac{s}{s+1}(n-k), where s is the interleaving order, n the length and k the dimension of the code. Upper bounds on the list size and the decoding failure probability are given where the latter is based on a novel Loidreau-Overbeck-like decoder for ILRS codes. The results are extended to decoding of lifted interleaved linearized Reed-Solomon (LILRS) codes in the sum-subspace metric and interleaved skew Reed-Solomon (ISRS) codes in the skew metric. We generalize fast minimal approximant basis interpolation techniques to obtain efficient decoding schemes for ILRS codes (and variants) with subquadratic complexity in the code length. Up to our knowledge, the presented decoding schemes are the first being able to correct errors beyond the unique decoding region in the sum-rank, sum-subspace and skew metric. The results for the proposed decoding schemes are validated via Monte Carlo simulations.Comment: submitted to IEEE Transactions on Information Theory, 57 pages, 10 figure
    corecore