350 research outputs found

    Efficient integrity verification of replicated data in cloud

    Get PDF
    The cloud computing is an emerging model in which computing infrastructure resources are provided as a service over the Internet. Data owners can outsource their data by remotely storing them in the cloud and enjoy on-demand high quality services from a shared pool of configurable computing resources. By using these data storage services, the data owners can relieve the burden of local data storage and maintenance. However, since data owners and the cloud servers are not in the same trusted domain, the outsourced data may be at risk as the cloud server may no longer be fully trusted. Therefore, data integrity is of critical importance in such a scenario. Cloud should let the owners or a trusted third party to check for the integrity of their data storage without demanding a local copy of the data. Owners often replicate their data on the cloud servers across multiple data centers to provide a higher level of scalability, availability, and durability. When the data owners ask the Cloud Service Provider (CSP) to replicate data, they are charged a higher storage fee by the CSP. Therefore, the data owners need to be strongly convinced that the CSP is storing data copies agreed on in the service level contract, and data-updates have been correctly executed on all the remotely stored copies. In this thesis, a Dynamic Multi-Replica Provable Data Possession scheme (DMR-PDP) is proposed that prevents the CSP from cheating; for example, by maintaining fewer copies than paid for and/or tampering data. In addition, we also extended the scheme to support a basic file versioning system where only the difference between the original file and the updated file is propagated rather than the propagation of operations for privacy reasons. DMR-PDP also supports efficient dynamic operations like block modification, insertion and deletion on replicas over the cloud servers --Abstract, page iii

    An extensive research survey on data integrity and deduplication towards privacy in cloud storage

    Get PDF
    Owing to the highly distributed nature of the cloud storage system, it is one of the challenging tasks to incorporate a higher degree of security towards the vulnerable data. Apart from various security concerns, data privacy is still one of the unsolved problems in this regards. The prime reason is that existing approaches of data privacy doesn't offer data integrity and secure data deduplication process at the same time, which is highly essential to ensure a higher degree of resistance against all form of dynamic threats over cloud and internet systems. Therefore, data integrity, as well as data deduplication is such associated phenomena which influence data privacy. Therefore, this manuscript discusses the explicit research contribution toward data integrity, data privacy, and data deduplication. The manuscript also contributes towards highlighting the potential open research issues followed by a discussion of the possible future direction of work towards addressing the existing problems

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    A Framework for Uncertain Cloud Data Security and Recovery Based on Hybrid Multi-User Medical Decision Learning Patterns

    Get PDF
    Machine learning has been supporting real-time cloud based medical computing systems. However, most of the computing servers are independent of data security and recovery scheme in multiple virtual machines due to high computing cost and time. Also, this cloud based medical applications require static security parameters for cloud data security. Cloud based medical applications require multiple servers to store medical records or machine learning patterns for decision making. Due to high Uncertain computational memory and time, these cloud systems require an efficient data security framework to provide strong data access control among the multiple users. In this work, a hybrid cloud data security framework is developed to improve the data security on the large machine learning patterns in real-time cloud computing environment. This work is implemented in two phases’ i.e. data replication phase and multi-user data access security phase. Initially, machine decision patterns are replicated among the multiple servers for Uncertain data recovering phase. In the multi-access cloud data security framework, a hybrid multi-access key based data encryption and decryption model is implemented on the large machine learning medical patterns for data recovery and security process. Experimental results proved that the present two-phase data recovering, and security framework has better computational efficiency than the conventional approaches on large medical decision patterns

    TSKY: a dependable middleware solution for data privacy using public storage clouds

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaThis dissertation aims to take advantage of the virtues offered by data storage cloud based systems on the Internet, proposing a solution that avoids security issues by combining different providers’ solutions in a vision of a cloud-of-clouds storage and computing. The solution, TSKY System (or Trusted Sky), is implemented as a middleware system, featuring a set of components designed to establish and to enhance conditions for security, privacy, reliability and availability of data, with these conditions being secured and verifiable by the end-user, independently of each provider. These components, implement cryptographic tools, including threshold and homomorphic cryptographic schemes, combined with encryption, replication, and dynamic indexing mecha-nisms. The solution allows data management and distribution functions over data kept in different storage clouds, not necessarily trusted, improving and ensuring resilience and security guarantees against Byzantine faults and at-tacks. The generic approach of the TSKY system model and its implemented services are evaluated in the context of a Trusted Email Repository System (TSKY-TMS System). The TSKY-TMS system is a prototype that uses the base TSKY middleware services to store mailboxes and email Messages in a cloud-of-clouds
    • …
    corecore