502 research outputs found

    End-to-end security for video distribution

    Get PDF

    Statistical mechanical evaluation of spread spectrum watermarking model with image restoration

    Get PDF
    In cases in which an original image is blind, a decoding method where both the image and the messages can be estimated simultaneously is desirable. We propose a spread spectrum watermarking model with image restoration based on Bayes estimation. We therefore need to assume some prior probabilities. The probability for estimating the messages is given by the uniform distribution, and the ones for the image are given by the infinite range model and 2D Ising model. Any attacks from unauthorized users can be represented by channel models. We can obtain the estimated messages and image by maximizing the posterior probability. We analyzed the performance of the proposed method by the replica method in the case of the infinite range model. We first calculated the theoretical values of the bit error rate from obtained saddle point equations and then verified them by computer simulations. For this purpose, we assumed that the image is binary and is generated from a given prior probability. We also assume that attacks can be represented by the Gaussian channel. The computer simulation retults agreed with the theoretical values. In the case of prior probability given by the 2D Ising model, in which each pixel is statically connected with four-neighbors, we evaluated the decoding performance by computer simulations, since the replica theory could not be applied. Results using the 2D Ising model showed that the proposed method with image restoration is as effective as the infinite range model for decoding messages. We compared the performances in a case in which the image was blind and one in which it was informed. The difference between these cases was small as long as the embedding and attack rates were small. This demonstrates that the proposed method with simultaneous estimation is effective as a watermarking decoder

    Watermarking for multimedia security using complex wavelets

    Get PDF
    This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms

    Optimization of Multibit Watermarking

    Get PDF

    Digital rights management techniques for H.264 video

    Get PDF
    This work aims to present a number of low-complexity digital rights management (DRM) methodologies for the H.264 standard. Initially, requirements to enforce DRM are analyzed and understood. Based on these requirements, a framework is constructed which puts forth different possibilities that can be explored to satisfy the objective. To implement computationally efficient DRM methods, watermarking and content based copy detection are then chosen as the preferred methodologies. The first approach is based on robust watermarking which modifies the DC residuals of 4×4 macroblocks within I-frames. Robust watermarks are appropriate for content protection and proving ownership. Experimental results show that the technique exhibits encouraging rate-distortion (R-D) characteristics while at the same time being computationally efficient. The problem of content authentication is addressed with the help of two methodologies: irreversible and reversible watermarks. The first approach utilizes the highest frequency coefficient within 4×4 blocks of the I-frames after CAVLC en- tropy encoding to embed a watermark. The technique was found to be very effect- ive in detecting tampering. The second approach applies the difference expansion (DE) method on IPCM macroblocks within P-frames to embed a high-capacity reversible watermark. Experiments prove the technique to be not only fragile and reversible but also exhibiting minimal variation in its R-D characteristics. The final methodology adopted to enforce DRM for H.264 video is based on the concept of signature generation and matching. Specific types of macroblocks within each predefined region of an I-, B- and P-frame are counted at regular intervals in a video clip and an ordinal matrix is constructed based on their count. The matrix is considered to be the signature of that video clip and is matched with longer video sequences to detect copies within them. Simulation results show that the matching methodology is capable of not only detecting copies but also its location within a longer video sequence. Performance analysis depict acceptable false positive and false negative rates and encouraging receiver operating charac- teristics. Finally, the time taken to match and locate copies is significantly low which makes it ideal for use in broadcast and streaming applications
    • 

    corecore