21,262 research outputs found

    A Framework for Approximation Schemes on Disk Graphs

    Full text link
    We initiate a systematic study of approximation schemes for fundamental optimization problems on disk graphs, a common generalization of both planar graphs and unit-disk graphs. Our main contribution is a general framework for designing efficient polynomial-time approximation schemes (EPTASes) for vertex-deletion problems on disk graphs, which results in EPTASes for many problems including Vertex Cover, Feedback Vertex Set, Small Cycle Hitting (in particular, Triangle Hitting), PkP_k-Hitting for k{3,4,5}k\in\{3,4,5\}, Path Deletion, Pathwidth 11-Deletion, Component Order Connectivity, Bounded Degree Deletion, Pseudoforest Deletion, Finite-Type Component Deletion, etc. All EPTASes obtained using our framework are robust in the sense that they do not require a realization of the input graph. To the best of our knowledge, prior to this work, the only problems known to admit (E)PTASes on disk graphs are Maximum Clique, Independent Set, Dominating set, and Vertex Cover, among which the existing PTAS [Erlebach et al., SICOMP'05] and EPTAS [Leeuwen, SWAT'06] for Vertex Cover require a realization of the input disk graph (while ours does not). The core of our framework is a reduction for a broad class of (approximation) vertex-deletion problems from (general) disk graphs to disk graphs of bounded local radius, which is a new invariant of disk graphs introduced in this work. Disk graphs of bounded local radius can be viewed as a mild generalization of planar graphs, which preserves certain nice properties of planar graphs. Specifically, we prove that disk graphs of bounded local radius admit the Excluded Grid Minor property and have locally bounded treewidth. This allows existing techniques for designing approximation schemes on planar graphs (e.g., bidimensionality and Baker's technique) to be directly applied to disk graphs of bounded local radius

    Exploring the impact of graph locality for the resolution of MIS with neutral atom devices

    Full text link
    In the past years, many quantum algorithms have been proposed to tackle hard combinatorial problems. In particular, the Maximum Independent Set (MIS) is a known NP-hard problem that can be naturally encoded in Rydberg atom arrays. By representing a graph with an ensemble of neutral atoms one can leverage Rydberg dynamics to naturally encode the constraints and the solution to MIS. However, the classes of graphs that can be directly mapped ``vertex-to-atom" on standard devices with 2D capabilities are currently limited to Unit-Disk graphs. In this setting, the inherent spatial locality of the graphs can be leveraged by classical polynomial-time approximation schemes (PTAS) that guarantee an ϵ\epsilon-approximate solution. In this work, we build upon recent progress made for using 3D arrangements of atoms to embed more complex classes of graphs. We report experimental and theoretical results which represent important steps towards tackling combinatorial tasks on quantum computers for which no classical efficient ε\varepsilon-approximation scheme exists.Comment: Complements the results from arXiv:2209.05164 from some of the authors with experimental exploration and additional theoretical analysi

    Optimization in Geometric Graphs: Complexity and Approximation

    Get PDF
    We consider several related problems arising in geometric graphs. In particular, we investigate the computational complexity and approximability properties of several optimization problems in unit ball graphs and develop algorithms to find exact and approximate solutions. In addition, we establish complexity-based theoretical justifications for several greedy heuristics. Unit ball graphs, which are defined in the three dimensional Euclidian space, have several application areas such as computational geometry, facility location and, particularly, wireless communication networks. Efficient operation of wireless networks involves several decision problems that can be reduced to well known optimization problems in graph theory. For instance, the notion of a \virtual backbone" in a wire- less network is strongly related to a minimum connected dominating set in its graph theoretic representation. Motivated by the vastness of application areas, we study several problems including maximum independent set, minimum vertex coloring, minimum clique partition, max-cut and min-bisection. Although these problems have been widely studied in the context of unit disk graphs, which are the two dimensional version of unit ball graphs, there is no established result on the complexity and approximation status for some of them in unit ball graphs. Furthermore, unit ball graphs can provide a better representation of real networks since the nodes are deployed in the three dimensional space. We prove complexity results and propose solution procedures for several problems using geometrical properties of these graphs. We outline a matching-based branch and bound solution procedure for the maximum k-clique problem in unit disk graphs and demonstrate its effectiveness through computational tests. We propose using minimum bottleneck connected dominating set problem in order to determine the optimal transmission range of a wireless network that will ensure a certain size of "virtual backbone". We prove that this problem is NP-hard in general graphs but solvable in polynomial time in unit disk and unit ball graphs. We also demonstrate work on theoretical foundations for simple greedy heuristics. Particularly, similar to the notion of "best" approximation algorithms with respect to their approximation ratios, we prove that several simple greedy heuristics are "best" in the sense that it is NP-hard to recognize the gap between the greedy solution and the optimal solution. We show results for several well known problems such as maximum clique, maximum independent set, minimum vertex coloring and discuss extensions of these results to a more general class of problems. In addition, we propose a "worst-out" heuristic based on edge contractions for the max-cut problem and provide analytical and experimental comparisons with a well known "best-in" approach and its modified versions

    Local Approximation Schemes for Ad Hoc and Sensor Networks

    Get PDF
    We present two local approaches that yield polynomial-time approximation schemes (PTAS) for the Maximum Independent Set and Minimum Dominating Set problem in unit disk graphs. The algorithms run locally in each node and compute a (1+ε)-approximation to the problems at hand for any given ε > 0. The time complexity of both algorithms is O(TMIS + log*! n/εO(1)), where TMIS is the time required to compute a maximal independent set in the graph, and n denotes the number of nodes. We then extend these results to a more general class of graphs in which the maximum number of pair-wise independent nodes in every r-neighborhood is at most polynomial in r. Such graphs of polynomially bounded growth are introduced as a more realistic model for wireless networks and they generalize existing models, such as unit disk graphs or coverage area graphs

    A PTAS for the minimum dominating set problem in unit disk graphs

    Get PDF
    We present a polynomial-time approximation scheme (PTAS) for the minimum dominating set problem in unit disk graphs. In contrast to previously known approximation schemes for the minimum dominating set problem on unit disk graphs, our approach does not assume a geometric representation of the vertices (specifying the positions of the disks in the plane) to be given as part of the input. \u

    Approximating Minimum Independent Dominating Sets in Wireless Networks

    Get PDF
    We present the first polynomial-time approximation scheme (PTAS) for the Minimum Independent Dominating Set problem in graphs of polynomially bounded growth. Graphs of bounded growth are used to characterize wireless communication networks, and this class of graph includes many models known from the literature, e.g. (Quasi) Unit Disk Graphs. An independent dominating set is a dominating set in a graph that is also independent. It thus combines the advantages of both structures, and there are many applications that rely on these two structures e.g. in the area of wireless ad hoc networks. The presented approach yields a robust algorithm, that is, the algorithm accepts any undirected graph as input, and returns a (1+")- pproximate minimum dominating set, or a certificate showing that the input graph does not reflect a wireless network

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    Stabbing line segments with disks: complexity and approximation algorithms

    Full text link
    Computational complexity and approximation algorithms are reported for a problem of stabbing a set of straight line segments with the least cardinality set of disks of fixed radii r>0r>0 where the set of segments forms a straight line drawing G=(V,E)G=(V,E) of a planar graph without edge crossings. Close geometric problems arise in network security applications. We give strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs and other subgraphs (which are often used in network design) for r[dmin,ηdmax]r\in [d_{\min},\eta d_{\max}] and some constant η\eta where dmaxd_{\max} and dmind_{\min} are Euclidean lengths of the longest and shortest graph edges respectively. Fast O(ElogE)O(|E|\log|E|)-time O(1)O(1)-approximation algorithm is proposed within the class of straight line drawings of planar graphs for which the inequality rηdmaxr\geq \eta d_{\max} holds uniformly for some constant η>0,\eta>0, i.e. when lengths of edges of GG are uniformly bounded from above by some linear function of r.r.Comment: 12 pages, 1 appendix, 15 bibliography items, 6th International Conference on Analysis of Images, Social Networks and Texts (AIST-2017
    corecore