157 research outputs found

    Efficient Unified Arithmetic for Hardware Cryptography

    Get PDF
    The basic arithmetic operations (i.e. addition, multiplication, and inversion) in finite fields, GF(q), where q = pk and p is a prime integer, have several applications in cryptography, such as RSA algorithm, Diffie-Hellman key exchange algorithm [1], the US federal Digital Signature Standard [2], elliptic curve cryptography [3, 4], and also recently identity based cryptography [5, 6]. Most popular finite fields that are heavily used in cryptographic applications due to elliptic curve based schemes are prime fields GF(p) and binary extension fields GF(2n). Recently, identity based cryptography based on pairing operations defined over elliptic curve points has stimulated a significant level of interest in the arithmetic of ternary extension fields, GF(3^n)

    Multiple-Valued Radix-2 Signed-Digit Arithmetic Circuits for High-Performance VLSI Systems

    Get PDF

    Novel arithmetic implementations using cellular neural network arrays.

    Get PDF
    The primary goal of this research is to explore the use of arrays of analog self-synchronized cells---the cellular neural network (CNN) paradigm---in the implementation of novel digital arithmetic architectures. In exploring this paradigm we also discover that the implementation of these CNN arrays produces very low system noise; that is, noise generated by the rapid switching of current through power supply die connections---so called di/dt noise. With the migration to sub 100 nanometer process technology, signal integrity is becoming a critical issue when integrating analog and digital components onto the same chip, and so the CNN architectural paradigm offers a potential solution to this problem. A typical example is the replacement of conventional digital circuitry adjacent to sensitive bio-sensors in a SoC Bio-Platform. The focus of this research is therefore to discover novel approaches to building low-noise digital arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic but with the same circuit components as used in analog circuit design. We address our exploration by first improving upon previous research into CNN binary arithmetic arrays. The second phase of our research introduces a logical extension of the binary arithmetic method to implement binary signed-digit (BSD) arithmetic. To this end, a new class of CNNs that has three stable states is introduced, and is used to implement arithmetic circuits that use binary inputs and outputs but internally uses the BSD number representation. Finally, we develop CNN arrays for a 2-dimensional number representation (the Double-base Number System - DBNS). A novel adder architecture is described in detail, that performs the addition as well as reducing the representation for further processing; the design incorporates an innovative self-programmable array. Extensive simulations have shown that our new architectures can reduce system noise by almost 70dB and crosstalk by more than 23dB over standard digital implementations.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .I27. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6159. Thesis (Ph.D.)--University of Windsor (Canada), 2005

    HIGH-SPEED CO-PROCESSORS BASED ON REDUNDANT NUMBER SYSTEMS

    Get PDF
    There is a growing demand for high-speed arithmetic co-processors for use in applications with computationally intensive tasks. For instance, Fast Fourier Transform (FFT) co-processors are used in real-time multimedia services and financial applications use decimal co-processors to perform large amounts of decimal computations. Using redundant number systems to eliminate word-wide carry propagation within interim operations is a well-known technique to increase the speed of arithmetic hardware units. Redundant number systems are mostly useful in applications where many consecutive arithmetic operations are performed prior to the final result, making it advantageous for arithmetic co-processors. This thesis discusses the implementation of two popular arithmetic co-processors based on redundant number systems: namely, the binary FFT co-processor and the decimal arithmetic co-processor. FFT co-processors consist of several consecutive multipliers and adders over complex numbers. FFT architectures are implemented based on fixed-point and floating-point arithmetic. The main advantage of floating-point over fixed-point arithmetic is the wide dynamic range it introduces. Moreover, it avoids numerical issues such as scaling and overflow/underflow concerns at the expense of higher cost. Furthermore, floating-point implementation allows for an FFT co-processor to collaborate with general purpose processors. This offloads computationally intensive tasks from the primary processor. The first part of this thesis, which is devoted to FFT co-processors, proposes a new FFT architecture that uses a new Binary-Signed Digit (BSD) carry-limited adder, a new floating-point BSD multiplier and a new floating-point BSD three-operand adder. Finally, a new unit labeled as Fused-Dot-Product-Add (FDPA) is designed to compute AB+CD+E over floating-point BSD operands. The second part of the thesis discusses decimal arithmetic operations implemented in hardware using redundant number systems. These operations are popularly used in decimal floating-point co-processors. A new signed-digit decimal adder is proposed along with a sequential decimal multiplier that uses redundant number systems to increase the operational frequency of the multiplier. New redundant decimal division and square-root units are also proposed. The architectures proposed in this thesis were all implemented using Hardware-Description-Language (Verilog) and synthesized using Synopsys Design Compiler. The evaluation results prove the speed improvement of the new arithmetic units over previous pertinent works. Consequently, the FFT and decimal co-processors designed in this thesis work with at least 10% higher speed than that of previous works. These architectures are meant to fulfill the demand for the high-speed co-processors required in various applications such as multimedia services and financial computations

    High sample-rate Givens rotations for recursive least squares

    Get PDF
    The design of an application-specific integrated circuit of a parallel array processor is considered for recursive least squares by QR decomposition using Givens rotations, applicable in adaptive filtering and beamforming applications. Emphasis is on high sample-rate operation, which, for this recursive algorithm, means that the time to perform arithmetic operations is critical. The algorithm, architecture and arithmetic are considered in a single integrated design procedure to achieve optimum results. A realisation approach using standard arithmetic operators, add, multiply and divide is adopted. The design of high-throughput operators with low delay is addressed for fixed- and floating-point number formats, and the application of redundant arithmetic considered. New redundant multiplier architectures are presented enabling reductions in area of up to 25%, whilst maintaining low delay. A technique is presented enabling the use of a conventional tree multiplier in recursive applications, allowing savings in area and delay. Two new divider architectures are presented showing benefits compared with the radix-2 modified SRT algorithm. Givens rotation algorithms are examined to determine their suitability for VLSI implementation. A novel algorithm, based on the Squared Givens Rotation (SGR) algorithm, is developed enabling the sample-rate to be increased by a factor of approximately 6 and offering area reductions up to a factor of 2 over previous approaches. An estimated sample-rate of 136 MHz could be achieved using a standard cell approach and O.35pm CMOS technology. The enhanced SGR algorithm has been compared with a CORDIC approach and shown to benefit by a factor of 3 in area and over 11 in sample-rate. When compared with a recent implementation on a parallel array of general purpose (GP) DSP chips, it is estimated that a single application specific chip could offer up to 1,500 times the computation obtained from a single OP DSP chip

    Design and implementation of high-radix arithmetic systems based on the SDNR/RNS data representation

    Get PDF
    This project involved the design and implementation of high-radix arithmetic systems based on the hybrid SDNRIRNS data representation. Some real-time applications require a real-time arithmetic system. An SDNR/RNS arithmetic system provides parallel, real-time processing. The advantages and disadvantages of high-radix SDNR/RNS arithmetic, and the feasibility of implementing SDNR/RNS arithmetic systems in CMOS VLSI technology, were investigated in this project. A common methodological model, which included the stages of analysis, design, implementation, testing, and simulation, was followed. The combination of the SDNR and RNS transforms potential complex logic networks into simpler logic blocks. It was found that when constructing a SDNRIRNS adder, factors such as the radix, digit set, and moduli must be taken into account. There are many avenues still to explore. For example, implementing other arithmetic systems in the same CMOS VLSI technology used in this project and comparing them to equivalent SDNR/RNS systems would provide a set of benchmarks. These benchmarks would be useful in addressing issues relating to relative performance
    corecore