300 research outputs found

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    A Simple and Robust Gray Image Encryption Scheme Using Chaotic Logistic Map and Artificial Neural Network

    Get PDF
    A robust gray image encryption scheme using chaotic logistic map and artificial neural network (ANN) is introduced. In the proposed method, an external secret key is used to derive the initial conditions for the logistic chaotic maps which are employed to generate weights and biases matrices of the multilayer perceptron (MLP). During the learning process with the backpropagation algorithm, ANN determines the weight matrix of the connections. The plain image is divided into four subimages which are used for the first diffusion stage. The subimages obtained previously are divided into the square subimage blocks. In the next stage, different initial conditions are employed to generate a key stream which will be used for permutation and diffusion of the subimage blocks. Some security analyses such as entropy analysis, statistical analysis, and key sensitivity analysis are given to demonstrate the key space of the proposed algorithm which is large enough to make brute force attacks infeasible. Computing validation using experimental data with several gray images has been carried out with detailed numerical analysis, in order to validate the high security of the proposed encryption scheme

    A Naïve Visual Cryptographic Algorithm for the Transfer of Compressed Medical Images

    Get PDF
    The transmission of a suitably compressed image over a bandwidth, over long distances, gives rise towards a new era in the field of information technology. A gradual increase in this appending scenic application, involving the transfer of the images securely over the Ethernet has become an increasingly important aspect to be addressed during thou phenomenon, especially in the transfer of the digital medical images vividly, encapsulated with abundant information related to these images. The compressed medical images of the DICOM format contain certain amount of confidential data, pertaining to a clinical research or to an individual, and the confidentiality of the same has to be preserved from various security threats and eves-dropping. With a widespread applications among various multimedia applicative systems, telemedicine, medical imaging, military and certain safety-critical applications, inter-net and intra-net communicative applications, etc, a reliable transfer of suitable information, efficiently & securely is considered as one of the revolutionary aims in today’s communication technology and visual cryptographic methodologies. Real-time applications as such detailed above majorly is concerned with the security measures and many algorithms have been developed as a proof for various visual cryptographic methodologies. In this paper we propose an efficient and a reliable visual cryptographic methodology which focuses on the encryption and decryption of the two-dimensional DICOM standard compressed medical image, effectively.  This paper discusses an efficient design of 192 bit encoder using AES Rijndael Algorithm with the decomposition of an image into square image size blocks and the image blocks are shuffled using 2D CAT map. The shuffling of the image blocks/pixels employs a Logistic map of these image pixels coupled with 2D mapping of the pixels of the DICOM standard medical image, generated randomly, being the control parameter thereby creating a confusion between the cipher and the plain image, gradually increasing the resistive factor against the significant attacks. This paper proposes various analytical metrics such as correlation analysis, entropy analysis, homogeneity analysis, energy analysis, contrast and mean of absolute deviation analysis, to evaluate the proposed algorithm, and their suitability in image encryption applications
    • …
    corecore