1,753 research outputs found

    Extrinsic Parameter Calibration for Line Scanning Cameras on Ground Vehicles with Navigation Systems Using a Calibration Pattern

    Full text link
    Line scanning cameras, which capture only a single line of pixels, have been increasingly used in ground based mobile or robotic platforms. In applications where it is advantageous to directly georeference the camera data to world coordinates, an accurate estimate of the camera's 6D pose is required. This paper focuses on the common case where a mobile platform is equipped with a rigidly mounted line scanning camera, whose pose is unknown, and a navigation system providing vehicle body pose estimates. We propose a novel method that estimates the camera's pose relative to the navigation system. The approach involves imaging and manually labelling a calibration pattern with distinctly identifiable points, triangulating these points from camera and navigation system data and reprojecting them in order to compute a likelihood, which is maximised to estimate the 6D camera pose. Additionally, a Markov Chain Monte Carlo (MCMC) algorithm is used to estimate the uncertainty of the offset. Tested on two different platforms, the method was able to estimate the pose to within 0.06 m / 1.05∘^{\circ} and 0.18 m / 2.39∘^{\circ}. We also propose several approaches to displaying and interpreting the 6D results in a human readable way.Comment: Published in MDPI Sensors, 30 October 201

    Terrain Referenced Navigation Using SIFT Features in LiDAR Range-Based Data

    Get PDF
    The use of GNSS in aiding navigation has become widespread in aircraft. The long term accuracy of INS are enhanced by frequent updates of the highly precise position estimations GNSS provide. Unfortunately, operational environments exist where constant signal or the requisite number of satellites are unavailable, significantly degraded, or intentionally denied. This thesis describes a novel algorithm that uses scanning LiDAR range data, computer vision features, and a reference database to generate aircraft position estimations to update drifting INS estimates. The algorithm uses a single calibrated scanning LiDAR to sample the range and angle to the ground as an aircraft flies, forming a point cloud. The point cloud is orthorectified into a coordinate system common to a previously recorded reference of the flyover region. The point cloud is then interpolated into a Digital Elevation Model (DEM) of the ground. Range-based SIFT features are then extracted from both the airborne and reference DEMs. Features common to both the collected and reference range images are selected using a SIFT descriptor search. Geometrically inconsistent features are filtered out using RANSAC outlier removal, and surviving features are projected back to their source coordinates in the original point cloud. The point cloud features are used to calculate a least squares correspondence transform that aligns the collected features to the reference features. Applying the correspondence that best aligns the ground features is then applied to the nominal aircraft position, creating a new position estimate. The algorithm was tested on legacy flight data and typically produces position estimates within 10 meters of truth using threshold conditions

    Guidance, Navigation and Control for UAV Close Formation Flight and Airborne Docking

    Get PDF
    Unmanned aerial vehicle (UAV) capability is currently limited by the amount of energy that can be stored onboard or the small amount that can be gathered from the environment. This has historically lead to large, expensive vehicles with considerable fuel capacity. Airborne docking, for aerial refueling, is a viable solution that has been proven through decades of implementation with manned aircraft, but had not been successfully tested or demonstrated with UAVs. The prohibitive challenge is the highly accurate and reliable relative positioning performance that is required to dock with a small target, in the air, amidst external disturbances. GNSS-based navigation systems are well suited for reliable absolute positioning, but fall short for accurate relative positioning. Direct, relative sensor measurements are precise, but can be unreliable in dynamic environments. This work proposes an experimentally verified guidance, navigation and control solution that enables a UAV to autonomously rendezvous and dock with a drogue that is being towed by another autonomous UAV. A nonlinear estimation framework uses precise air-to-air visual observations to correct onboard sensor measurements and produce an accurate relative state estimate. The state of the drogue is estimated using known geometric and inertial characteristics and air-to-air observations. Setpoint augmentation algorithms compensate for leader turn dynamics during formation flight, and drogue physical constraints during docking. Vision-aided close formation flight has been demonstrated over extended periods; as close as 4 m; in wind speeds in excess of 25 km/h; and at altitudes as low as 15 m. Docking flight tests achieved numerous airborne connections over multiple flights, including five successful docking manoeuvres in seven minutes of a single flight. To the best of our knowledge, these are the closest formation flights performed outdoors and the first UAV airborne docking

    SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements

    Get PDF
    In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces

    Investigation on the automatic geo-referencing of archaeological UAV photographs by correlation with pre-existing ortho-photos

    Get PDF
    We present a method for the automatic geo-referencing of archaeological photographs captured aboard unmanned aerial vehicles (UAVs), termed UPs. We do so by help of pre-existing ortho-photo maps (OPMs) and digital surface models (DSMs). Typically, these pre-existing data sets are based on data that were captured at a widely different point in time. This renders the detection (and hence the matching) of homologous feature points in the UPs and OPMs infeasible mainly due to temporal variations of vegetation and illumination. Facing this difficulty, we opt for the normalized cross correlation coefficient of perspectively transformed image patches as the measure of image similarity. Applying a threshold to this measure, we detect candidates for homologous image points, resulting in a distinctive, but computationally intensive method. In order to lower computation times, we reduce the dimensionality and extents of the search space by making use of a priori knowledge of the data sets. By assigning terrain heights interpolated in the DSM to the image points found in the OPM, we generate control points. We introduce respective observations into a bundle block, from which gross errors i.e. false matches are eliminated during its robust adjustment. A test of our approach on a UAV image data set demonstrates its potential and raises hope to successfully process large image archives

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Pohang Canal Dataset: A Multimodal Maritime Dataset for Autonomous Navigation in Restricted Waters

    Full text link
    This paper presents a multimodal maritime dataset and the data collection procedure used to gather it, which aims to facilitate autonomous navigation in restricted water environments. The dataset comprises measurements obtained using various perception and navigation sensors, including a stereo camera, an infrared camera, an omnidirectional camera, three LiDARs, a marine radar, a global positioning system, and an attitude heading reference system. The data were collected along a 7.5-km-long route that includes a narrow canal, inner and outer ports, and near-coastal areas in Pohang, South Korea. The collection was conducted under diverse weather and visual conditions. The dataset and its detailed description are available for free download at https://sites.google.com/view/pohang-canal-dataset.Comment: Submitted to IJRR as a data paper for revie
    • …
    corecore