939 research outputs found

    ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ํƒ์ƒ‰์„ ์œ„ํ•œ ์ ์ง„์  ์‹œ๊ฐํ™” ์‹œ์Šคํ…œ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์„œ์ง„์šฑ.Understanding data through interactive visualization, also known as visual analytics, is a common and necessary practice in modern data science. However, as data sizes have increased at unprecedented rates, the computation latency of visualization systems becomes a significant hurdle to visual analytics. The goal of this dissertation is to design a series of systems for progressive visual analytics (PVA)โ€”a visual analytics paradigm that can provide intermediate results during computation and allow visual exploration of these resultsโ€”to address the scalability hurdle. To support the interactive exploration of data with billions of records, we first introduce SwiftTuna, an interactive visualization system with scalable visualization and computation components. Our performance benchmark demonstrates that it can handle data with four billion records, giving responsive feedback every few seconds without precomputation. Second, we present PANENE, a progressive algorithm for the Approximate k-Nearest Neighbor (AKNN) problem. PANENE brings useful machine learning methods into visual analytics, which has been challenging due to their long initial latency resulting from AKNN computation. In particular, we accelerate t-Distributed Stochastic Neighbor Embedding (t-SNE), a popular non-linear dimensionality reduction technique, which enables the responsive visualization of data with a few hundred columns. Each of these two contributions aims to address the scalability issues stemming from a large number of rows or columns in data, respectively. Third, from the users' perspective, we focus on improving the trustworthiness of intermediate knowledge gained from uncertain results in PVA. We propose a novel PVA concept, Progressive Visual Analytics with Safeguards, and introduce PVA-Guards, safeguards people can leave on uncertain intermediate knowledge that needs to be verified. We also present a proof-of-concept system, ProReveal, designed and developed to integrate seven safeguards into progressive data exploration. Our user study demonstrates that people not only successfully created PVA-Guards on ProReveal but also voluntarily used PVA-Guards to manage the uncertainty of their knowledge. Finally, summarizing the three studies, we discuss design challenges for progressive systems as well as future research agendas for PVA.ํ˜„๋Œ€ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค์—์„œ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•œ ์‹œ๊ฐํ™”๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ํ•„์ˆ˜์ ์ธ ๋ถ„์„ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ตœ๊ทผ ๋ฐ์ดํ„ฐ์˜ ํฌ๊ธฐ๊ฐ€ ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋ฉด์„œ ๋ฐ์ดํ„ฐ ํฌ๊ธฐ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ง€์—ฐ ์‹œ๊ฐ„์ด ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•œ ์‹œ๊ฐ์  ๋ถ„์„์— ํฐ ๊ฑธ๋ฆผ๋Œ์ด ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ™•์žฅ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ ์ง„์  ์‹œ๊ฐ์  ๋ถ„์„(Progressive Visual Analytics)์„ ์ง€์›ํ•˜๋Š” ์ผ๋ จ์˜ ์‹œ์Šคํ…œ์„ ๋””์ž์ธํ•˜๊ณ  ๊ฐœ๋ฐœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ์ง„์  ์‹œ๊ฐ์  ๋ถ„์„ ์‹œ์Šคํ…œ์€ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๊ฐ€ ์™„์ „ํžˆ ๋๋‚˜์ง€ ์•Š๋”๋ผ๋„ ์ค‘๊ฐ„ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ œ๊ณตํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ์˜ ํฌ๊ธฐ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ง€์—ฐ ์‹œ๊ฐ„ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ๋กœ, ์ˆ˜์‹ญ์–ต ๊ฑด์˜ ํ–‰์„ ๊ฐ€์ง€๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ๋Š” SwiftTuna ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋ฐ ์‹œ๊ฐ์  ํ‘œํ˜„์˜ ํ™•์žฅ์„ฑ์„ ๋ชฉํ‘œ๋กœ ๊ฐœ๋ฐœ๋œ ์ด ์‹œ์Šคํ…œ์€, ์•ฝ 40์–ต ๊ฑด์˜ ํ–‰์„ ๊ฐ€์ง„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹œ๊ฐํ™”๋ฅผ ์ „์ฒ˜๋ฆฌ ์—†์ด ์ˆ˜ ์ดˆ๋งˆ๋‹ค ์—…๋ฐ์ดํŠธํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘˜์งธ๋กœ, ๊ทผ์‚ฌ์  k-์ตœ๊ทผ์ ‘์ (Approximate k-Nearest Neighbor) ๋ฌธ์ œ๋ฅผ ์ ์ง„์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๋Š” PANENE ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ทผ์‚ฌ์  k-์ตœ๊ทผ์ ‘์  ๋ฌธ์ œ๋Š” ์—ฌ๋Ÿฌ ๊ธฐ๊ณ„ ํ•™์Šต ๊ธฐ๋ฒ•์—์„œ ์“ฐ์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ดˆ๊ธฐ ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ๊ธธ์–ด์„œ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•œ ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜๊ธฐ ํž˜๋“  ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. PANENE ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ด๋Ÿฌํ•œ ๊ธด ์ดˆ๊ธฐ ๊ณ„์‚ฐ ์‹œ๊ฐ„์„ ํš๊ธฐ์ ์œผ๋กœ ๊ฐœ์„ ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ๊ธฐ๋ฒ•์„ ์‹œ๊ฐ์  ๋ถ„์„์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ํŠนํžˆ, ์œ ์šฉํ•œ ๋น„์„ ํ˜•์  ์ฐจ์› ๊ฐ์†Œ ๊ธฐ๋ฒ•์ธ t-๋ถ„ํฌ ํ™•๋ฅ ์  ์ž„๋ฒ ๋”ฉ(t-Distributed Stochastic Neighbor Embedding)์„ ๊ฐ€์†ํ•˜์—ฌ ์ˆ˜๋ฐฑ ๊ฐœ์˜ ์ฐจ์›์„ ๊ฐ€์ง€๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋น ๋ฅธ ์‹œ๊ฐ„ ๋‚ด์— ์‚ฌ์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์œ„์˜ ๋‘ ์‹œ์Šคํ…œ๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋ฐ์ดํ„ฐ์˜ ํ–‰ ๋˜๋Š” ์—ด์˜ ๊ฐœ์ˆ˜๋กœ ์ธํ•œ ํ™•์žฅ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ–ˆ๋‹ค๋ฉด, ์„ธ ๋ฒˆ์งธ ์‹œ์Šคํ…œ์—์„œ๋Š” ์ ์ง„์  ์‹œ๊ฐ์  ๋ถ„์„์˜ ์‹ ๋ขฐ๋„ ๋ฌธ์ œ๋ฅผ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ ์ง„์  ์‹œ๊ฐ์  ๋ถ„์„์—์„œ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ฃผ์–ด์ง€๋Š” ์ค‘๊ฐ„ ๊ณ„์‚ฐ ๊ฒฐ๊ณผ๋Š” ์ตœ์ข… ๊ฒฐ๊ณผ์˜ ๊ทผ์‚ฌ์น˜์ด๋ฏ€๋กœ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ธ์ดํ”„๊ฐ€๋“œ๋ฅผ ์ด์šฉํ•œ ์ ์ง„์  ์‹œ๊ฐ์  ๋ถ„์„(Progressive Visual Analytics with Safeguards)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๊ฐœ๋…์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ ์ง„์  ํƒ์ƒ‰์—์„œ ๋งˆ์ฃผํ•˜๋Š” ๋ถˆํ™•์‹คํ•œ ์ค‘๊ฐ„ ์ง€์‹์— ์„ธ์ดํ”„๊ฐ€๋“œ๋ฅผ ๋‚จ๊ธธ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ ํƒ์ƒ‰์—์„œ ์–ป์€ ์ง€์‹์˜ ์ •ํ™•๋„๋ฅผ ์ถ”ํ›„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋˜ํ•œ, ์ด๋Ÿฌํ•œ ๊ฐœ๋…์„ ์‹ค์ œ๋กœ ๊ตฌํ˜„ํ•˜์—ฌ ํƒ‘์žฌํ•œ ProReveal ์‹œ์Šคํ…œ์„ ์†Œ๊ฐœํ•œ๋‹ค. ProReveal๋ฅผ ์ด์šฉํ•œ ์‚ฌ์šฉ์ž ์‹คํ—˜์—์„œ ์‚ฌ์šฉ์ž๋“ค์€ ์„ธ์ดํ”„๊ฐ€๋“œ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ์—ˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ค‘๊ฐ„ ์ง€์‹์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ์„ธ์ดํ”„๊ฐ€๋“œ๋ฅผ ์ž๋ฐœ์ ์œผ๋กœ ์ด์šฉํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์œ„ ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ์ ์ง„์  ์‹œ๊ฐ์  ๋ถ„์„ ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•  ๋•Œ์˜ ๋””์ž์ธ์  ๋‚œ์ œ์™€ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ๋ชจ์ƒ‰ํ•œ๋‹ค.CHAPTER1. Introduction 2 1.1 Background and Motivation 2 1.2 Thesis Statement and Research Questions 5 1.3 Thesis Contributions 5 1.3.1 Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 6 1.3.2 ProgressiveComputation of Approximate k-Nearest Neighbors and Responsive t-SNE 7 1.3.3 Progressive Visual Analytics with Safeguards 8 1.4 Structure of Dissertation 9 CHAPTER2. Related Work 11 2.1 Progressive Visual Analytics 11 2.1.1 Definitions 11 2.1.2 System Latency and Human Factors 13 2.1.3 Users, Tasks, and Models 15 2.1.4 Techniques, Algorithms, and Systems. 17 2.1.5 Uncertainty Visualization 19 2.2 Approaches for Scalable Visualization Systems 20 2.3 The k-Nearest Neighbor (KNN) Problem 22 2.4 t-Distributed Stochastic Neighbor Embedding 26 CHAPTER3. SwiTuna: Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 28 3.1 The SwiTuna Design 31 3.1.1 Design Considerations 32 3.1.2 System Overview 33 3.1.3 Scalable Visualization Components 36 3.1.4 Visualization Cards 40 3.1.5 User Interface and Interaction 42 3.2 Responsive Querying 44 3.2.1 Querying Pipeline 44 3.2.2 Prompt Responses 47 3.2.3 Incremental Processing 47 3.3 Evaluation: Performance Benchmark 49 3.3.1 Study Design 49 3.3.2 Results and Discussion 52 3.4 Implementation 56 3.5 Summary 56 CHAPTER4. PANENE:AProgressive Algorithm for IndexingandQuerying Approximate k-Nearest Neighbors 58 4.1 Approximate k-Nearest Neighbor 61 4.1.1 A Sequential Algorithm 62 4.1.2 An Online Algorithm 63 4.1.3 A Progressive Algorithm 66 4.1.4 Filtered AKNN Search 71 4.2 k-Nearest Neighbor Lookup Table 72 4.3 Benchmark. 78 4.3.1 Online and Progressive k-d Trees 78 4.3.2 k-Nearest Neighbor Lookup Tables 83 4.4 Applications 85 4.4.1 Progressive Regression and Density Estimation 85 4.4.2 Responsive t-SNE 87 4.5 Implementation 92 4.6 Discussion 92 4.7 Summary 93 CHAPTER5. ProReveal: Progressive Visual Analytics with Safeguards 95 5.1 Progressive Visual Analytics with Safeguards 98 5.1.1 Definition 98 5.1.2 Examples 101 5.1.3 Design Considerations 103 5.2 ProReveal 105 5.3 Evaluation 121 5.4 Discussion 127 5.5 Summary 130 CHAPTER6. Discussion 132 6.1 Lessons Learned 132 6.2 Limitations 135 CHAPTER7. Conclusion 137 7.1 Thesis Contributions Revisited 137 7.2 Future Research Agenda 139 7.3 Final Remarks 141 Abstract (Korean) 155 Acknowledgments (Korean) 157Docto

    Spott : on-the-spot e-commerce for television using deep learning-based video analysis techniques

    Get PDF
    Spott is an innovative second screen mobile multimedia application which offers viewers relevant information on objects (e.g., clothing, furniture, food) they see and like on their television screens. The application enables interaction between TV audiences and brands, so producers and advertisers can offer potential consumers tailored promotions, e-shop items, and/or free samples. In line with the current views on innovation management, the technological excellence of the Spott application is coupled with iterative user involvement throughout the entire development process. This article discusses both of these aspects and how they impact each other. First, we focus on the technological building blocks that facilitate the (semi-) automatic interactive tagging process of objects in the video streams. The majority of these building blocks extensively make use of novel and state-of-the-art deep learning concepts and methodologies. We show how these deep learning based video analysis techniques facilitate video summarization, semantic keyframe clustering, and (similar) object retrieval. Secondly, we provide insights in user tests that have been performed to evaluate and optimize the application's user experience. The lessons learned from these open field tests have already been an essential input in the technology development and will further shape the future modifications to the Spott application

    Efficient bulk-loading methods for temporal and multidimensional index structures

    Get PDF
    Nahezu alle naturwissenschaftlichen Bereiche profitieren von neuesten Analyse- und Verarbeitungsmethoden fรผr groรŸe Datenmengen. Diese Verfahren setzten eine effiziente Verarbeitung von geo- und zeitbezogenen Daten voraus, da die Zeit und die Position wichtige Attribute vieler Daten sind. Die effiziente Anfrageverarbeitung wird insbesondere durch den Einsatz von Indexstrukturen ermรถglicht. Im Fokus dieser Arbeit liegen zwei Indexstrukturen: Multiversion B-Baum (MVBT) und R-Baum. Die erste Struktur wird fรผr die Verwaltung von zeitbehafteten Daten, die zweite fรผr die Indexierung von mehrdimensionalen Rechteckdaten eingesetzt. Stรคndig- und schnellwachsendes Datenvolumen stellt eine groรŸe Herausforderung an die Informatik dar. Der Aufbau und das Aktualisieren von Indexen mit herkรถmmlichen Methoden (Datensatz fรผr Datensatz) ist nicht mehr effizient. Um zeitnahe und kosteneffiziente Datenverarbeitung zu ermรถglichen, werden Verfahren zum schnellen Laden von Indexstrukturen dringend benรถtigt. Im ersten Teil der Arbeit widmen wir uns der Frage, ob es ein Verfahren fรผr das Laden von MVBT existiert, das die gleiche I/O-Komplexitรคt wie das externe Sortieren besitz. Bis jetzt blieb diese Frage unbeantwortet. In dieser Arbeit haben wir eine neue Kostruktionsmethode entwickelt und haben gezeigt, dass diese gleiche Zeitkomplexitรคt wie das externe Sortieren besitzt. Dabei haben wir zwei algorithmische Techniken eingesetzt: Gewichts-Balancierung und Puffer-Bรคume. Unsere Experimenten zeigen, dass das Resultat nicht nur theoretischer Bedeutung ist. Im zweiten Teil der Arbeit beschรคftigen wir uns mit der Frage, ob und wie statistische Informationen รผber Geo-Anfragen ausgenutzt werden kรถnnen, um die Anfrageperformanz von R-Bรคumen zu verbessern. Unsere neue Methode verwendet Informationen wie Seitenverhรคltnis und Seitenlรคngen eines reprรคsentativen Anfragerechtecks, um einen guten R-Baum bezรผglich eines hรคufig eingesetzten Kostenmodells aufzubauen. Falls diese Informationen nicht verfรผgbar sind, optimieren wir R-Bรคume bezรผglich der Summe der Volumina von minimal umgebenden Rechtecken der Blattknoten. Da das Problem des Aufbaus von optimalen R-Bรคumen bezรผglich dieses KostenmaรŸes NP-hart ist, fรผhren wir zunรคchst das Problem auf ein eindimensionales Partitionierungsproblem zurรผck, indem wir die Daten bezรผglich optimierte raumfรผllende Kurven sortieren. Dann lรถsen wir dieses Problem durch Einsatz vom dynamischen Programmieren. Die I/O-Komplexitรคt des Verfahrens ist gleich der von externem Sortieren, da die I/O-Laufzeit der Methode durch die Laufzeit des Sortierens dominiert wird. Im letzten Teil der Arbeit haben wir die entwickelten Partitionierungsvefahren fรผr den Aufbau von Geo-Histogrammen eingesetzt, da diese รคhnlich zu R-Bรคumen eine disjunkte Partitionierung des Raums erzeugen. Ergebnisse von intensiven Experimenten zeigen, dass sich unter Verwendung von neuen Partitionierungstechniken sowohl R-Bรคume mit besserer Anfrageperformanz als auch Geo-Histogrammen mit besserer Schรคtzqualitรคt im Vergleich zu Konkurrenzverfahren generieren lassen

    Backpropagated Gradient Representations for Anomaly Detection

    Full text link
    Learning representations that clearly distinguish between normal and abnormal data is key to the success of anomaly detection. Most of existing anomaly detection algorithms use activation representations from forward propagation while not exploiting gradients from backpropagation to characterize data. Gradients capture model updates required to represent data. Anomalies require more drastic model updates to fully represent them compared to normal data. Hence, we propose the utilization of backpropagated gradients as representations to characterize model behavior on anomalies and, consequently, detect such anomalies. We show that the proposed method using gradient-based representations achieves state-of-the-art anomaly detection performance in benchmark image recognition datasets. Also, we highlight the computational efficiency and the simplicity of the proposed method in comparison with other state-of-the-art methods relying on adversarial networks or autoregressive models, which require at least 27 times more model parameters than the proposed method.Comment: European Conference on Computer Vision (ECCV) 202

    A Pre-trained Data Deduplication Model based on Active Learning

    Full text link
    In the era of big data, the issue of data quality has become increasingly prominent. One of the main challenges is the problem of duplicate data, which can arise from repeated entry or the merging of multiple data sources. These "dirty data" problems can significantly limit the effective application of big data. To address the issue of data deduplication, we propose a pre-trained deduplication model based on active learning, which is the first work that utilizes active learning to address the problem of deduplication at the semantic level. The model is built on a pre-trained Transformer and fine-tuned to solve the deduplication problem as a sequence to classification task, which firstly integrate the transformer with active learning into an end-to-end architecture to select the most valuable data for deduplication model training, and also firstly employ the R-Drop method to perform data augmentation on each round of labeled data, which can reduce the cost of manual labeling and improve the model's performance. Experimental results demonstrate that our proposed model outperforms previous state-of-the-art (SOTA) for deduplicated data identification, achieving up to a 28% improvement in Recall score on benchmark datasets

    Discrete Optimization Methods for Segmentation and Matching

    Get PDF
    This dissertation studies discrete optimization methods for several computer vision problems. In the first part, a new objective function for superpixel segmentation is proposed. This objective function consists of two components: entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes. I present a new graph construction for images and show that this construction induces a matroid. The segmentation is then given by the graph topology which maximizes the objective function under the matroid constraint. By exploiting submodular and monotonic properties of the objective function, I develop an efficient algorithm with a worst-case performance bound of 12\frac{1}{2} for the superpixel segmentation problem. Extensive experiments on the Berkeley segmentation benchmark show the proposed algorithm outperforms the state of the art in all the standard evaluation metrics. Next, I propose a video segmentation algorithm by maximizing a submodular objective function subject to a matroid constraint. This function is similar to the standard energy function in computer vision with unary terms, pairwise terms from the Potts model, and a novel higher-order term based on appearance histograms. I show that the standard Potts model prior, which becomes non-submodular for multi-label problems, still induces a submodular function in a maximization framework. A new higher-order prior further enforces consistency in the appearance histograms both spatially and temporally across the video. The matroid constraint leads to a simple algorithm with a performance bound of 12\frac{1}{2}. A branch and bound procedure is also presented to improve the solution computed by the algorithm. The last part of the dissertation studies the object localization problem in images given a single hand-drawn example or a gallery of shapes as the object model. Although many shape matching algorithms have been proposed for the problem, chamfer matching remains to be the preferred method when speed and robustness are considered. In this dissertation, I significantly improve the accuracy of chamfer matching while reducing the computational time from linear to sublinear (shown empirically). It is achieved by incorporating edge orientation information in the matching algorithm so the resulting cost function is piecewise smooth and the cost variation is tightly bounded. Moreover, I present a sublinear time algorithm for exact computation of the directional chamfer matching score using techniques from 3D distance transforms and directional integral images. In addition, the smooth cost function allows one to bound the cost distribution of large neighborhoods and skip the bad hypotheses. Experiments show that the proposed approach improves the speed of the original chamfer matching up to an order of 45 times, and it is much faster than many state of art techniques while the accuracy is comparable. I further demonstrate the application of the proposed algorithm in providing seamless operation for a robotic bin picking system

    Performance evaluation of word-aligned compression methods for bitmap indices

    Get PDF
    Bitmap indices are a widely used scheme for large read-only repositories in data warehouses and scientific databases. This binary representation allows the use of bit-wise operations for fast query processing and is typically compressed using run-length encoding techniques. Most bitmap compression techniques are aligned using a fixed encoding length (32 or 64 bits) to avoid explicit decompression during query time. They have been proposed to extend or enhance word-aligned hybrid (WAH) compression. This paper presents a comparative study of four bitmap compression techniques: WAH, PLWAH, CONCISE, and EWAH. Experiments are targeted to identify the conditions under which each method should be applied and quantify the overhead incurred during query processing. Performance in terms of compression ratio and query time is evaluated over synthetic-generated bitmap indices, and results are validated over bitmap indices generated from real data sets. Different query optimizations are explored, query time estimation formulas are defined, and the conditions under which one method should be preferred over another are formalized
    • โ€ฆ
    corecore