27 research outputs found

    Distributed frequent hierarchical pattern mining for robust and efficient large-scale association discovery

    Get PDF
    Field of study: Computer science.Dr. Chi-Ren Shyu, Dissertation Supervisor.Includes vita."May 2017."Frequent pattern mining is a classic data mining technique, generally applicable to a wide range of application domains, and a mature area of research. The fundamental challenge arises from the combinatorial nature of frequent itemsets, scaling exponentially with respect to the number of unique items. Apriori-based and FPTree-based algorithms have dominated the space thus far. Initial phases of this research relied on the Apriori algorithm and utilized a distributed computing environment; we proposed the Cartesian Scheduler to manage Apriori's candidate generation process. To address the limitation of bottom-up frequent pattern mining algorithms such as Apriori and FPGrowth, we propose the Frequent Hierarchical Pattern Tree (FHPTree): a tree structure and new frequent pattern mining paradigm. The classic problem is redefined as frequent hierarchical pattern mining where the goal is to detect frequent maximal pattern covers. Under the proposed paradigm, compressed representations of maximal patterns are mined using a top-down FHPTree traversal, FHPGrowth, which detects large patterns before their subsets, thus yielding significant reductions in computation time. The FHPTree memory footprint is small; the number of nodes in the structure scales linearly with respect to the number of unique items. Additionally, the FHPTree serves as a persistent, dynamic data structure to index frequent patterns and enable efficient searches. When the search space is exponential, efficient targeted mining capabilities are paramount; this is one of the key contributions of the FHPTree. This dissertation will demonstrate the performance of FHPGrowth, achieving a 300x speed up over state-of-the-art maximal pattern mining algorithms and approximately a 2400x speedup when utilizing FHPGrowth in a distributed computing environment. In addition, we allude to future research opportunities, and suggest various modifications to further optimize the FHPTree and FHPGrowth. Moreover, the methods we offer will have an impact on other data mining research areas including contrast set mining as well as spatial and temporal mining.Includes bibliographical references (pages 121-133)

    Building a Collaborative Phone Blacklisting System with Local Differential Privacy

    Full text link
    Spam phone calls have been rapidly growing from nuisance to an increasingly effective scam delivery tool. To counter this increasingly successful attack vector, a number of commercial smartphone apps that promise to block spam phone calls have appeared on app stores, and are now used by hundreds of thousands or even millions of users. However, following a business model similar to some online social network services, these apps often collect call records or other potentially sensitive information from users' phones with little or no formal privacy guarantees. In this paper, we study whether it is possible to build a practical collaborative phone blacklisting system that makes use of local differential privacy (LDP) mechanisms to provide clear privacy guarantees. We analyze the challenges and trade-offs related to using LDP, evaluate our LDP-based system on real-world user-reported call records collected by the FTC, and show that it is possible to learn a phone blacklist using a reasonable overall privacy budget and at the same time preserve users' privacy while maintaining utility for the learned blacklist.Comment: 15 pages, 10 figures, 7 algorithm

    A Synopsis Based Approach for Itemset Frequency Estimation over Massive Multi-Transaction Stream

    Full text link
    The streams where multiple transactions are associated with the same key are prevalent in practice, e.g., a customer has multiple shopping records arriving at different time. Itemset frequency estimation on such streams is very challenging since sampling based methods, such as the popularly used reservoir sampling, cannot be used. In this article, we propose a novel k-Minimum Value (KMV) synopsis based method to estimate the frequency of itemsets over multi-transaction streams. First, we extract the KMV synopses for each item from the stream. Then, we propose a novel estimator to estimate the frequency of an itemset over the KMV synopses. Comparing to the existing estimator, our method is not only more accurate and efficient to calculate but also follows the downward-closure property. These properties enable the incorporation of our new estimator with existing frequent itemset mining (FIM) algorithm (e.g., FP-Growth) to mine frequent itemsets over multi-transaction streams. To demonstrate this, we implement a KMV synopsis based FIM algorithm by integrating our estimator into existing FIM algorithms, and we prove it is capable of guaranteeing the accuracy of FIM with a bounded size of KMV synopsis. Experimental results on massive streams show our estimator can significantly improve on the accuracy for both estimating itemset frequency and FIM compared to the existing estimators
    corecore